Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster

Abstract

Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-l-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Admasu TD et al (2018) Drug synergy slows aging and improves healthspan through IGF and SREBP lipid signaling. Dev Cell 47:67–79. https://doi.org/10.1016/j.devcel.2018.09.001

    CAS  Article  PubMed  Google Scholar 

  2. Albertini E, Koziel R, Durr A, Neuhaus M, Jansen-Durr P (2012) Cystathionine beta synthase modulates senescence of human endothelial cells. Aging (Albany NY) 4:664–673

    CAS  Article  Google Scholar 

  3. Arvidsson S, Kwasniewski M, Riaño-Pachón DM, Mueller-Roeber B (2008) QuantPrime—a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinf 9:465. https://doi.org/10.1186/1471-2105-9-465

    CAS  Article  Google Scholar 

  4. Austad SN, Bartke A (2015) Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology 62:40–46. https://doi.org/10.1159/000381472

    CAS  Article  PubMed  Google Scholar 

  5. Avanesian A, Khodayari B, Felgner JS, Jafari M (2010) Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology 11:45–52. https://doi.org/10.1007/s10522-009-9227-1

    CAS  Article  PubMed  Google Scholar 

  6. Barardo D et al (2017) The DrugAge database of aging-related drugs. Aging Cell 16:594–597. https://doi.org/10.1111/acel.12585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Baskar R, Li L, Moore PK (2007) Hydrogen sulfide-induces DNA damage and changes in apoptotic gene expression in human lung fibroblast cells. FASEB J 21:247–255. https://doi.org/10.1096/fj.06-6255com

    CAS  Article  PubMed  Google Scholar 

  8. Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97. https://doi.org/10.3109/10408448409029321

    CAS  Article  PubMed  Google Scholar 

  9. Brack C, Bechter-Thüring E, Labuhn M (1997) N-Acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci 53:960–966. https://doi.org/10.1007/pl00013199

    CAS  Article  PubMed  Google Scholar 

  10. Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21:212–217. https://doi.org/10.1091/mbc.E09-03-0199

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Budde MW, Roth MB (2011) The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics 189:521–532. https://doi.org/10.1534/genetics.111.129841

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Castillo-Quan JI et al (2019) A triple drug combination targeting components of the nutrient-sensing network maximizes longevity. Proc Natl Acad Sci USA 116:20817–20819. https://doi.org/10.1073/pnas.1913212116

    CAS  Article  PubMed  Google Scholar 

  13. Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716. https://doi.org/10.1111/j.1745-7254.2007.00629.x

    CAS  Article  PubMed  Google Scholar 

  14. Chen X et al (2017) Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci Rep 7:13248. https://doi.org/10.1038/s41598-017-13251-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Danilov A, Shaposhnikov M, Plyusnina E, Kogan V, Fedichev P, Moskalev A (2013) Selective anticancer agents suppress aging in Drosophila. Oncotarget 4:1507–1526

    Article  Google Scholar 

  16. de Cabo R, Diaz-Ruiz A (2020) A central role for the gasotransmitter H2S in aging. Cell Metab 31:10–12. https://doi.org/10.1016/j.cmet.2019.11.015

    CAS  Article  PubMed  Google Scholar 

  17. de Magalhães JP, Toussaint O (2004) GenAge: a genomic and proteomic network map of human ageing. FEBS Lett 571:243–247. https://doi.org/10.1016/j.febslet.2004.07.006

    CAS  Article  PubMed  Google Scholar 

  18. Desjardins D et al (2017) Antioxidants reveal an inverted U-shaped dose-response relationship between reactive oxygen species levels and the rate of aging in Caenorhabditis elegans. Aging Cell 16:104–112. https://doi.org/10.1111/acel.12528

    CAS  Article  PubMed  Google Scholar 

  19. DiNicolantonio JJ, OKeefe JH, McCarty MF (2017) Boosting endogenous production of vasoprotective hydrogen sulfide via supplementation with taurine and N-acetylcysteine: a novel way to promote cardiovascular health. Open Heart 4:e000600. https://doi.org/10.1136/openhrt-2017-000600

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dóka É et al (2020) Control of protein function through oxidation and reduction of persulfidated states. Sci Adv 6:eaax8358. https://doi.org/10.1126/sciadv.aax8358

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Dombkowski RA, Russell MJ, Schulman AA, Doellman MM, Olson KR (2005) Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am J Physiol Regul Integr Comp Physiol 288:R243-252. https://doi.org/10.1152/ajpregu.00324.2004

    CAS  Article  PubMed  Google Scholar 

  22. Du Y, Liu XH, Zhu HC, Wang L, Wang ZS, Ning JZ, Xiao CC (2019) Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats. Iranian J Basic Med Sci 22:99–105

    Google Scholar 

  23. Edwards C et al (2015) Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet 16:8. https://doi.org/10.1186/s12863-015-0167-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Ezeriņa D, Takano Y, Hanaoka K, Urano Y, Dick TP (2018) N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol 25(447–459):e444. https://doi.org/10.1016/j.chembiol.2018.01.011

    CAS  Article  Google Scholar 

  25. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290. https://doi.org/10.1126/science.1059497

    CAS  Article  PubMed  Google Scholar 

  26. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118:1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205

    CAS  Article  PubMed  Google Scholar 

  27. Flurkey K, Astle CM, Harrison DE (2010) Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 65:1275–1284. https://doi.org/10.1093/gerona/glq155

    CAS  Article  PubMed  Google Scholar 

  28. Fu L, Liu K, He J, Tian C, Yu X, Yang J (2020) Direct proteomic mapping of cysteine persulfidation. Antioxid Redox Signal 33:1061–1076. https://doi.org/10.1089/ars.2019.7777

    CAS  Article  PubMed  Google Scholar 

  29. Gaitanidis A, Dimitriadou A, Dowse H, Sanyal S, Duch C, Consoulas C (2019) Longitudinal assessment of health-span and pre-death morbidity in wild type Drosophila. Aging (Albany NY) 11:1850–1873

    Article  Google Scholar 

  30. Garratt M (2020) Why do sexes differ in lifespan extension? Sex-specific pathways of aging and underlying mechanisms for dimorphic responses. Nutr Healthy Aging 5:247–259. https://doi.org/10.3233/NHA-190067

    CAS  Article  Google Scholar 

  31. Grotewiel MS, Martin I, Bhandari P, Cook-Wiens E (2005) Functional senescence in Drosophila melanogaster. Ageing Res Rev 4:372–397. https://doi.org/10.1016/j.arr.2005.04.001

    CAS  Article  PubMed  Google Scholar 

  32. Han SK et al (2016) OASIS 2: online application for survival analysis 2 with features for the analysis of maximal lifespan and healthspan in aging research. Oncotarget 7:56147–56152

    Article  Google Scholar 

  33. Hine C et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160:132–144. https://doi.org/10.1016/j.cell.2014.11.048

    CAS  Article  PubMed  Google Scholar 

  34. Ibrahim H, Serag A, Farag MA (2021) Emerging analytical tools for the detection of the third gasotransmitter H2S, a comprehensive review. J Adv Res 27:137–153. https://doi.org/10.1016/j.jare.2020.05.018

    CAS  Article  PubMed  Google Scholar 

  35. Jain SK, Huning L, Micinski D (2014) Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1β secretion in monocytes exposed to high glucose levels. Metab Syndr Relat Disord 12:299–302. https://doi.org/10.1089/met.2014.0022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Janssens GE, Houtkooper RH (2020) Identification of longevity compounds with minimized probabilities of side effects. Biogerontology 21:709–719. https://doi.org/10.1007/s10522-020-09887-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson TE, de Castro E, Hegi de Castro S, Cypser J, Henderson S, Tedesco P (2001) Relationship between increased longevity and stress resistance as assessed through gerontogene mutations in Caenorhabditis elegans. Exp Gerontol 36:1609–1617. https://doi.org/10.1016/S0531-5565(01)00144-9

    CAS  Article  PubMed  Google Scholar 

  38. Kabil H, Kabil O, Banerjee R, Harshman LG, Pletcher SD (2011) Increased transsulfuration mediates longevity and dietary restriction in Drosophila. Proc Natl Acad Sci USA 108:16831–16836. https://doi.org/10.1073/pnas.1102008108

    Article  PubMed  Google Scholar 

  39. Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20:770–782. https://doi.org/10.1089/ars.2013.5339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Ke X et al (2017) Heat shock protein 90/Akt pathway participates in the cardioprotective effect of exogenous hydrogen sulfide against high glucose-induced injury to H9c2 cells. Int J Mol Med 39:1001–1010. https://doi.org/10.3892/ijmm.2017.2891

    CAS  Article  PubMed  Google Scholar 

  41. Kennedy BK et al (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713. https://doi.org/10.1016/j.cell.2014.10.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Kimura H (2020) Signalling by hydrogen sulfide and polysulfides via protein S-sulfuration. Br J Pharmacol 177:720–733. https://doi.org/10.1111/bph.14579

    CAS  Article  PubMed  Google Scholar 

  43. Landis GN, Doherty D, Tower J (2020) Analysis of Drosophila melanogaster lifespan. Methods Mol Biol 2144:47–56. https://doi.org/10.1007/978-1-0716-0592-9_4

    CAS  Article  PubMed  Google Scholar 

  44. Liu D et al (2014) Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. Pharmacol Biochem Behav 116:55–63. https://doi.org/10.1016/j.pbb.2013.11.009

    CAS  Article  PubMed  Google Scholar 

  45. Longchamp A et al (2018) Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173(117–129):e114. https://doi.org/10.1016/j.cell.2018.03.001

    CAS  Article  Google Scholar 

  46. Longen S, Beck KF, Pfeilschifter J (2016a) H2S-induced thiol-based redox switches: biochemistry and functional relevance for inflammatory diseases. Pharmacol Res 111:642–651. https://doi.org/10.1016/j.phrs.2016.07.026

    CAS  Article  PubMed  Google Scholar 

  47. Longen S, Richter F, Kohler Y, Wittig I, Beck KF, Pfeilschifter J (2016b) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H2S releasing donors in mammalian. Cells Sci Rep 6:29808. https://doi.org/10.1038/srep29808

    CAS  Article  PubMed  Google Scholar 

  48. Longo VD (2003) The Ras and Sch9 pathways regulate stress resistance and longevity. Exp Gerontol 38:807–811. https://doi.org/10.1016/S0531-5565(03)00113-X

    CAS  Article  PubMed  Google Scholar 

  49. Mantel N (1966) Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 50:163–170

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mathew ND, Schlipalius DI, Ebert PR (2011) Sulfurous gases as biological messengers and toxins: comparative genetics of their metabolism in model organisms. J Toxicol 2011:394970. https://doi.org/10.1155/2011/394970

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. McBean GJ (2012) The transsulfuration pathway: a source of cysteine for glutathione in astrocytes. Amino Acids 42:199–205. https://doi.org/10.1007/s00726-011-0864-8

    CAS  Article  PubMed  Google Scholar 

  52. Mehta CR, Patel NR, Tsiatis AA (1984) Exact significance testing to establish treatment equivalence with ordered categorical data. Biometrics 40:819–825

    CAS  Article  Google Scholar 

  53. Miller DL, Budde MW, Roth MB (2011) HIF-1 and SKN-1 coordinate the transcriptional response to hydrogen sulfide in Caenorhabditis elegans. PLoS ONE 6:e25476. https://doi.org/10.1371/journal.pone.0025476

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Miller DL, Roth MB (2007) Hydrogen sulfide increases thermotolerance and lifespan in Caenorhabditis elegans. Proc Natl Acad Sci USA 104:20618–20622. https://doi.org/10.1073/pnas.0710191104

    Article  PubMed  Google Scholar 

  55. Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C (2013a) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611. https://doi.org/10.1096/fj.12-216507

    CAS  Article  PubMed  Google Scholar 

  56. Módis K, Wolanska K, Vozdek R (2013b) Hydrogen sulfide in cell signaling, signal transduction, cellular bioenergetics and physiology in C. elegans. Gen Physiol Biophys 32:1–22. https://doi.org/10.4149/gpb_2013001

    CAS  Article  PubMed  Google Scholar 

  57. Mokhtari V, Afsharian P, Shahhoseini M, Kalantar SM, Moini A (2017) A review on various uses of N-acetyl cysteine. Cell J 19:11–17

    PubMed  Google Scholar 

  58. Moskalev A (2020) Is anti-ageing drug discovery becoming a reality? Expert Opin Drug Discov 15:135–138. https://doi.org/10.1080/17460441.2020.1702965

    Article  PubMed  Google Scholar 

  59. Moskalev A et al (2015a) Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging (Albany NY) 7:616–628

    CAS  Article  Google Scholar 

  60. Moskalev A et al (2015b) Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging 7:616–628

    CAS  Article  Google Scholar 

  61. Moskalev A, Chernyagina E, Kudryavtseva A, Shaposhnikov M (2017) Geroprotectors: a unified concept and screening approaches. Aging Dis 8:354–363

    Article  Google Scholar 

  62. Moskalev A et al (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15:407–415. https://doi.org/10.1111/acel.12463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Mun J, Kang HM, Jung J, Park C (2019) Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 42:446–454. https://doi.org/10.1007/s12272-019-01135-y

    CAS  Article  PubMed  Google Scholar 

  64. Ng LT, Ng LF, Tang RMY, Barardo D, Halliwell B, Moore PK, Gruber J (2020) Lifespan and healthspan benefits of exogenous H2S in C. elegans are independent from effects downstream of eat-2 mutation. NPJ Aging Mech Dis 6:6. https://doi.org/10.1038/s41514-020-0044-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Oh SI, Park JK, Park SK (2015) Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans. Clinics (Sao Paulo) 70:380–386. https://doi.org/10.6061/clinics/2015(05)13

    Article  Google Scholar 

  66. Panthi S, Chung HJ, Jung J, Jeong NY (2016) Physiological importance of hydrogen sulfide: emerging potent neuroprotector and neuromodulator. Oxid Med Cell Longev 2016:9049782. https://doi.org/10.1155/2016/9049782

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Paul BD, Snyder SH, Kashfi K (2021) Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 38:101772. https://doi.org/10.1016/j.redox.2020.101772

    CAS  Article  PubMed  Google Scholar 

  68. Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790:1005–1014. https://doi.org/10.1016/j.bbagen.2009.06.003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Perridon BW, Leuvenink HG, Hillebrands JL, van Goor H, Bos EM (2016) The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 8:2264–2289

    CAS  Article  Google Scholar 

  70. Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011) The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46:441–452. https://doi.org/10.1016/j.exger.2011.01.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32:467–481. https://doi.org/10.1007/s11357-010-9150-z

    CAS  Article  Google Scholar 

  72. Pushpakumar S, Kundu S, Sen U (2014) Endothelial dysfunction: the link between homocysteine and hydrogen sulfide. Curr Med Chem 21:3662–3672. https://doi.org/10.2174/0929867321666140706142335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Qabazard B, Ahmed S, Li L, Arlt VM, Moore PK, Stürzenbaum SR (2013) C. elegans aging is modulated by hydrogen sulfide and the sulfhydrylase/cysteine synthase cysl-2. PLoS ONE 8:e80135. https://doi.org/10.1371/journal.pone.0080135

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Qabazard B et al (2014) Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 20:2621–2630. https://doi.org/10.1089/ars.2013.5448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429:543–561. https://doi.org/10.1016/j.jmb.2016.12.015

    CAS  Article  PubMed  Google Scholar 

  76. Shaposhnikov M, Proshkina E, Koval L, Zemskaya N, Zhavoronkov A, Moskalev A (2018a) Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging (Albany NY) 10:3260–3272

    CAS  Article  Google Scholar 

  77. Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA (2018b) Effects of N-acetyl-l-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 10:2428–2458

    CAS  Article  Google Scholar 

  78. Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen’ev M (2020) Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress Chaperon 25:305–315. https://doi.org/10.1007/s12192-020-01074-4

    CAS  Article  Google Scholar 

  79. Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R (2009) Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem 284:22457–22466. https://doi.org/10.1074/jbc.M109.010868

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Smith JE 3rd, Cronmiller C (2001) The Drosophila daughterless gene autoregulates and is controlled by both positive and negative cis regulation. Development 128:4705–4714

    CAS  PubMed  Google Scholar 

  81. Snijder PM et al (2016) Overexpression of cystathionine gamma-lyase suppresses detrimental effects of spinocerebellar ataxia type 3. Mol Med 21:758–768. https://doi.org/10.2119/molmed.2015.00221

    CAS  Article  PubMed  Google Scholar 

  82. Sun HJ, Wu ZY, Nie XW, Bian JS (2019) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568. https://doi.org/10.3389/fphar.2019.01568

    CAS  Article  PubMed  Google Scholar 

  83. Tabassum R, Jeong NY, Jung J (2020) Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases. Neural Regen Res 15:653–662. https://doi.org/10.4103/1673-5374.266911

    Article  PubMed  Google Scholar 

  84. Testai L, Citi V, Martelli A, Brogi S, Calderone V (2020) Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 160:105125. https://doi.org/10.1016/j.phrs.2020.105125

    CAS  Article  PubMed  Google Scholar 

  85. Tower J (2017) Sex-specific gene expression and life span regulation. Trends Endocrinol Metab 28:735–747. https://doi.org/10.1016/j.tem.2017.07.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Vaiserman AM, Lushchak OV, Koliada AK (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev 31:9–35. https://doi.org/10.1016/j.arr.2016.08.004

    Article  PubMed  Google Scholar 

  87. Van Voorhies WA, Curtsinger JW, Rose MR (2006) Do longevity mutants always show trade-offs? Exp Gerontol 41:1055–1058. https://doi.org/10.1016/j.exger.2006.05.006

    CAS  Article  PubMed  Google Scholar 

  88. Viscomi C et al (2010) Combined treatment with oral metronidazole and N-acetylcysteine is effective in ethylmalonic encephalopathy. Nat Med 16:869–871. https://doi.org/10.1038/nm.2188

    CAS  Article  PubMed  Google Scholar 

  89. Wang C, Li Q, Redden DT, Weindruch R, Allison DB (2004) Statistical methods for testing effects on “maximum lifespan.” Mech Ageing Dev 125:629–632. https://doi.org/10.1016/j.mad.2004.07.003

    Article  PubMed  Google Scholar 

  90. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. https://doi.org/10.1096/fj.02-0211hyp

    CAS  Article  PubMed  Google Scholar 

  91. Wodarz A, Hinz U, Engelbert M, Knust E (1995) Expression of crumbs confers apical character on plasma membrane domains of ectodermal epithelia of Drosophila. Cell 82:67–76

    CAS  Article  Google Scholar 

  92. Wong R, Piper MD, Wertheim B, Partridge L (2009) Quantification of food intake in Drosophila. PLoS ONE 4:e6063. https://doi.org/10.1371/journal.pone.0006063

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Wu D, Si W, Wang M, Lv S, Ji A, Li Y (2015) Hydrogen sulfide in cancer: friend or foe? Nitric Oxide 50:38–45. https://doi.org/10.1016/j.niox.2015.08.004

    CAS  Article  PubMed  Google Scholar 

  94. Wu D, Wang H, Teng T, Duan S, Ji A, Li Y (2018) Hydrogen sulfide and autophagy: a double edged sword. Pharmacol Res 131:120–127. https://doi.org/10.1016/j.phrs.2018.03.002

    CAS  Article  PubMed  Google Scholar 

  95. Xin D et al (2018) l-Cysteine suppresses hypoxia-ischemia injury in neonatal mice by reducing glial activation, promoting autophagic flux and mediating synaptic modification via H2S formation. Brain Behav Immun 73:222–234. https://doi.org/10.1016/j.bbi.2018.05.007

    CAS  Article  PubMed  Google Scholar 

  96. Yang G et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18:1906–1919. https://doi.org/10.1089/ars.2012.4645

    CAS  Article  PubMed  Google Scholar 

  97. Yang Q, He GW (2019) Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury. Oxid Med Cell Longev 2019:7629673. https://doi.org/10.1155/2019/7629673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Zatsepina O et al (2020) Genome-wide transcriptional effects of deletions of sulphur metabolism genes in Drosophila melanogaster. Redox Biol 36:101654. https://doi.org/10.1016/j.redox.2020.101654

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang Y, Tang ZH, Ren Z, Qu SL, Liu MH, Liu LS, Jiang ZS (2013) Hydrogen sulfide, the next potent preventive and therapeutic agent in aging and age-associated diseases. Mol Cell Biol 33:1104–1113. https://doi.org/10.1128/MCB.01215-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Zivanovic J et al (2019) Selective persulfide detection reveals evolutionarily conserved antiaging effects of S-sulfhydration. Cell Metab 30(1152–1170):e1113. https://doi.org/10.1016/j.cmet.2019.10.007

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Institute of Biology of Komi Science Center for assistance in the experiments with Drosophila and MIPT for assistance in data analysis.

Funding

This work was supported by the Russian Science Foundation Grant N 17-74-30030.

Author information

Affiliations

Authors

Contributions

Conceptualization, AAM and MVS; Methodology, MVS, NVZ and LAK; Software, MVS, NVZ and LAK; Investigation, NVZ, LAK, EVS, DVY, AAG, NSU and NRM; Data Curation, MVS, NVZ, LAK and EVS; Writing—Original Draft Preparation, MVS and NVZ; Writing—Review & Editing, AAM; Visualization, MVS and NVZ; Supervision, AAM; Project Administration, MVS; Funding Acquisition, AAM.

Corresponding author

Correspondence to Alexey A. Moskalev.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 1257 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaposhnikov, M.V., Zemskaya, N.V., Koval, L.A. et al. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology (2021). https://doi.org/10.1007/s10522-021-09911-4

Download citation

Keyword

  • Hydrogen sulfide
  • Lifespan extension
  • Anti-aging intervention
  • Drosophila melanogaster