Skip to main content

Advertisement

Log in

Calculation of apparent age by linear combination of facial skin parameters: a predictive tool to evaluate the efficacy of cosmetic treatments and to assess the predisposition to accelerated aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The estimated apparent age (EAA) was estimated by a panel of trained experts, for the individuals in a cohort. Twelve independent clinical, biophysical and biochemical parameters measured on facial skin, have been identified by multiple regression analysis, which influence the EAA of a person of chronological age (CA) (under eye lines, clinically assessed crow’s feet, age spots, clinically evaluated firmness, forehead lines, pores, lip lines, instrumentally evaluated firmness, instrumentally evaluated crow feet, skin texture, in vivo fluorescence related to proliferation and glycation). An algorithm has been devised to obtain the calculated age score (CAS) in a cohort of 452 female volunteers, as

$$ {\text{CAS}}(n )= \Upsigma C_{i} P_{i} (n)\quad (i = 1{-}13,n = 1{-}452\,{\text{and}}\,P_{13} = 1) $$

where the coefficients C i are obtained by minimizing the difference EAA − CAS, and P i (n) are the experimental values of the i-th parameter for the n-th volunteer. The determination of CAS before and after a specific cosmetic or pharmacological anti-aging treatment can be used to objectively assess the efficacy of the treatment. The comparison of EAA(n) and of CAS(n) with CA(n) allows one to predict the susceptibility of an individual’s face to undergo aging. It has been observed that the biophysical and biochemical parameters play a relevant role in the assessment of the predisposition of skin to undergo accelerated aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barel AO, Clarys P (1995) Measurement of electrical capacitance. In: Serup J, Jemec GBE (eds) Handbook of non-invasive methods and the skin. CRC Press, Inc., Boca Raton, pp 165–172

    Google Scholar 

  • Brancaleon L, Lin G, Kollias N (1999) The in vivo fluorescence of tryptophan moieties in human skin increases with UV exposure and is a marker for epidermal proliferation. J Invest Dermatol 113:977–982. doi:10.1046/j.1523-1747.1999.00799.x

    Article  CAS  PubMed  Google Scholar 

  • Civille GV, Dus CA (1991) Evaluating tactile properties of skincare products: a descriptive analysis technique. Cosmet Toilet 106:83–88

    Google Scholar 

  • Close JA (1994) Men’s skin care: a sensory perspective. Cosmet Toilet 109:61–65

    Google Scholar 

  • Close JA, Blank R, Gelinas A, Penkin N (1982) Sensory evaluation: a scientific aid for R&D chemists, cosmetic technology. December, 4, 42–46

  • Corstjens H, Dicanio D, Muizzuddin N, Neven A, Sparacio R, Declercq L, Maes D (2008) Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp Gerontol 43:663–667. doi:10.1016/j.exger.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove MC, Franco OH, Granger SP, Murray PG, Mayes AE (2007) Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr 86:1225–1231

    CAS  PubMed  Google Scholar 

  • Cunliffe WJ, Kearney JN, Simpson NB (1980) A modified photometric technique for measuring sebum excretion rate. J Invest Dermatol 75:396. doi:10.1111/1523-1747.ep12523638

    Article  Google Scholar 

  • Declercq L, Van Overloop L, Hellemans L, Corstjens H, Maes D (2007) Detection of cis-urocanic acid in stratum corneum as a biological marker for UV exposure in human volunteer studies. Gordon research conference on barrier function of mammalian skin, Newport, August 2007

  • Declercq L, Corstjens H, Maes D (2008) Glycation end products. In: Barel AO, Paye S, Maibach H (eds) Handbook of cosmetic science and technology, 3rd edn. Informa Healthcare, London, pp 261–274

  • Dyer DG, Dunn JA, Thorpe SR, Bailie KE, Lyons TJ, Mc Cance DR, Baynes JW (1993) Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest 91:2463–2469. doi:10.1172/JCI116481

    Article  CAS  PubMed  Google Scholar 

  • Eisenbeiss C, Welzel J, Schmeller W (1998) The influence of female sex hormones on skin thickness: evaluation using 20 MHz sonography. Br J Dermatol 139:462–467. doi:10.1046/j.1365-2133.1998.02410.x

    Article  CAS  PubMed  Google Scholar 

  • Fthenakis C, Maes D, Smith WP (1991) In vivo assessment of skin elasticity using Ballistometry. J Soc Cosmet Chem 42:211–222

    Google Scholar 

  • Ghadially R, Brown BE, Sequeira-martin SM, Feingold KR, Elias PM (1995) The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest 95:2281–2290. doi:10.1172/JCI117919

    Article  CAS  PubMed  Google Scholar 

  • Giacomoni PU (2005) Ageing, science and the cosmetics industry. The micro-inflammatory model serves as a basis for developing effective anti-ageing products for the skin. EMBO Rep 6(Spec no):S45–S48. doi:10.1038/sj.embor.7400400

    Article  CAS  PubMed  Google Scholar 

  • Giacomoni PU, D’Alessio P (1996) Skin aging: the relevance of antioxidants. In: Rattan SIS, Toussaint O (eds) Molecular gerontology, research status and strategies. Plenum, New York, pp 177–192

    Google Scholar 

  • Giacomoni PU, Rein G (2001) Factors of skin ageing share common mechanisms. Biogerontology 2:219–229. doi:10.1023/A:1013222629919

    Article  CAS  PubMed  Google Scholar 

  • Gillies R, Zonios G, Anderson RR, Kollias N (2000) Fluorescence excitation spectroscopy provides information about human skin in vivo. J Invest Dermatol 115:704–707. doi:10.1046/j.1523-1747.2000.00091.x

    Article  CAS  PubMed  Google Scholar 

  • Gormley D (1986) Computer models and images of the cutaneous surface. Comput Dermatol 4:641–649

    Google Scholar 

  • Guinot C, Malvy DJ, Ambroisine L, Latreille J, Mauger E, Tenenhaus M, Morizot F, Lopez S, Le Fur I, Tschachler E (2002) Relative contribution of intrinsic vs extrinsic factors to skin aging as determined by a validated skin age score. Arch Dermatol 138:1454–1460. doi:10.1001/archderm.138.11.1454

    Article  PubMed  Google Scholar 

  • Hellemans L, Corstjens H, Neven A, Declercq L, Maes D (2003) Antioxidant enzyme activity in human stratum corneum shows seasonal variation with an age-dependent recovery. J Invest Dermatol 120:434–439

    Article  CAS  PubMed  Google Scholar 

  • Hellemans L, Van Overloop L, Neven A, Declercq L, Maes D (2006) Non-invasive measurement of the epidermal balance between proliferation and differentiation. J Invest Dermatol 126(S3):S18 (abstract)

    Google Scholar 

  • Kennedy C, Bastiaens MT, Bajdik CD, Willemze R, Westendorp RG, Bouwes Bavinck JN (2003) Leiden skin cancer study. Effect of smoking and sun on the aging skin. J Invest Dermatol 120:548–554

    Article  CAS  PubMed  Google Scholar 

  • Kollias N, Gillies R, Moran M, Kochevar IE, Anderson RR (1998) Endogenous skin fluorescence includes bands that may serve as quantitative markers of aging and photoaging. J Invest Dermatol 111:776–780

    Article  CAS  PubMed  Google Scholar 

  • Kristal BS, Yu BP (1992) An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol 47:B107–B114

    CAS  PubMed  Google Scholar 

  • Maes D, Marenus K (1998) Modulation of inflammatory reactions in skin: a new approach to the treatment of premature aging. In: Baran R, Maibach HI (eds) Textbook of cosmetic dermatology. Martin Dunitz, London, pp 469–485

    Google Scholar 

  • Monnier VM (1989) Toward a Maillard reaction theory of aging. Prog Clin Biol Res 304:1–22

    CAS  PubMed  Google Scholar 

  • Pinnagoda JP, Tupker RA, Agner T, Serup J (1990) Guidelines for trans epidermal water loss (TEWL) measurements. Contact Dermat 22:164–178

    Article  CAS  Google Scholar 

  • Rigal C, Leveque J, Makki S, Agache P (1983) Skin relief and aging. J Soc Cosmet Chem 34:177–190

    Google Scholar 

  • Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D (1995) Advanced glycation endproducts interacting with their endothelial receptor induce expression of V-CAM 1 in cultured human endothelial cells and in mice. J Clin Invest 96:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Serup J, Keiding J, Fullerton A, Gniadecka M, Gniadecki R (1995) High-frequency ultrasound examination of the skin: introduction and guide. In: Serup J, Jemec GBE (eds) Handbook of non-invasive methods and the skin. CRC, Boca Raton, pp 239–256

    Google Scholar 

  • Stamatas GN, Estanislao RB, Suero M, Rivera ZS, Li J, Khaiat A, Kollias N (2006) Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age. Br J Dermatol 154:125–132

    Article  CAS  PubMed  Google Scholar 

  • Tagami H (1995) Measurement of electrical conductance and impedance. In: Serup J, Jemec GBE (eds) Handbook of non-invasive methods and the skin. CRC, Boca Raton, pp 159–164

    Google Scholar 

  • Van der Valk PGM, Maibach HI (1990) A functional study of the skin barrier to evaporative water loss by means of repeated cellophane—tape stripping. Clin Exp Dermatol 15:180–182

    Article  PubMed  Google Scholar 

  • Van Overloop L, Declercq L, Maes D (2001) Visual scaling of human skin correlates to decreased ceramide levels and decreased stratum corneum protease activity. J Invest Dermatol 117(3):811 (abstract)

    Google Scholar 

  • Waller JM, Maibach HI (2005) Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 11:221–235

    Article  PubMed  Google Scholar 

  • Waller JM, Maibach HI (2006) Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol 12:145–514

    Article  PubMed  Google Scholar 

  • Warren R, Gartstein V, Kligman AM, Montagna W, Allendorf RA, Ridder GM (1991) Age, sunlight, and facial skin: a histological and quantitative study. J Am Acad Dermatol 25:751–760

    Article  CAS  PubMed  Google Scholar 

  • Wlaschek M, Schneider LA, Kohn M, Nuesseler E, Treiber N, Scharffetter-Kochanek K (2007) Aging after solar radiation. In: Giacomoni PU (ed) Biophysical and physiological effects of solar radiation on human skin. The Royal Society of Chemistry, Cambridge, pp 191–210

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo U. Giacomoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dicanio, D., Sparacio, R., Declercq, L. et al. Calculation of apparent age by linear combination of facial skin parameters: a predictive tool to evaluate the efficacy of cosmetic treatments and to assess the predisposition to accelerated aging. Biogerontology 10, 757–772 (2009). https://doi.org/10.1007/s10522-009-9222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-009-9222-6

Keywords

Navigation