Skip to main content
Log in

A weighted framework for unsupervised ensemble learning based on internal quality measures

  • S.I.: Computational Biomedicine
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Unsupervised ensemble, or consensus clustering, consists in finding the optimal combination strategy of individual clusterings that is robust with respect to the selection of an algorithmic clustering pool. Recently an approach was proposed based on the concept of consensus graph that has profound advantages over its predecessors. Despite its robust properties this approach assigns the same weight to the contribution of each clustering to the final solution. In this paper, we propose a weighting policy for this problem that is based on internal clustering quality measures and compare against other popular approaches. Results on publicly available datasets show that weights can significantly improve the accuracy performance while retaining the robust properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abawajy, J. H., Kelarev, A. V., & Chowdhury, M. (2013). Multistage approach for clustering and classification of ecg data. Computer Methods and Programs in Biomedicine, 112(3), 720–730.

    Article  Google Scholar 

  • Abello, J., Pardalos, P. M., & Resende, M. G. (2013). Handbook of massive data sets (Vol. 4). Berlin: Springer.

    Google Scholar 

  • Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. (2010). The balanced accuracy and its posterior distribution. In 20th international conference on Pattern recognition (ICPR), 2010 (pp. 3121–3124). IEEE.

  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1), 1–27.

    Article  Google Scholar 

  • Chang, H., & Yeung, D.-Y. (2008). Robust path-based spectral clustering. Pattern Recognition, 41(1), 191–203.

    Article  Google Scholar 

  • Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 224–227.

    Article  Google Scholar 

  • Deodhar, M., & Ghosh, J. (2006). Consensus clustering for detection of overlapping clusters in microarray data. In ICDM workshops (pp. 104–108).

  • Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32–57.

  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd, 96, 226–231.

    Google Scholar 

  • Fodeh, S. J., Brandt, C., Luong, T. B., Haddad, A., Schultz, M., Murphy, T., et al. (2013). Complementary ensemble clustering of biomedical data. Journal of Biomedical Informatics, 46(3), 436–443.

    Article  Google Scholar 

  • Fred, A. (2001). Finding consistent clusters in data partitions. In Multiple classifier systems (pp. 309–318). Springer.

  • Fred, A. L., & Jain, A. K. (2005). Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 835–850.

    Article  Google Scholar 

  • Fu, L., & Medico, E. (2007). Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics, 8(1), 3.

    Article  Google Scholar 

  • Gionis, A., Mannila, H., & Tsaparas, P. (2007). Clustering aggregation. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 4.

    Article  Google Scholar 

  • Goder, A., & Filkov, V. (2008). Consensus clustering algorithms: Comparison and refinement. In Alenex (Vol. 8, pp. 109–117). SIAM.

  • Haghtalab, S., Xanthopoulos, P., & Madani, K. (2015). A robust unsupervised consensus control chart pattern recognition framework. Expert Systems with Applications, 42, 6767–6776.

    Article  Google Scholar 

  • Halkidi, M., & Vazirgiannis, M. (2001). Clustering validity assessment: Finding the optimal partitioning of a data set. In Proceedings IEEE international conference on data mining, 2001. ICDM 2001 (pp. 187–194). IEEE.

  • Halkidi, M., Vazirgiannis, M., Batistakis, Y. (2000). Quality scheme assessment in the clustering process. In Proceedings of the 4th European conference on principles of data mining and knowledge discovery, PKDD ’00 (pp. 265–276) London, UK: Springer. ISBN 3-540-41066-X. URL http://dl.acm.org/citation.cfm?id=645804.669820. Accessed 20 Nov 2017.

  • Jang, J.-S. R., Sun, C.-T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing : A computational approach to learning and machine intelligence. New Jersey, NJ: Prentice Hall.

  • Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241–254.

    Article  Google Scholar 

  • Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al. (2006). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30(1), 25–36.

    Google Scholar 

  • Kovács, F., Legány, C., & Babos, A. (2005). Cluster validity measurement techniques. In 6th International symposium of hungarian researchers on computational intelligence.

  • Křivánek, M., & Morávek, J. (1986). Np-hard problems in hierarchical-tree clustering. Acta Informatica, 23(3), 311–323.

    Article  Google Scholar 

  • Kuncheva, L. I., Hadjitodorov, S. T., & Todorova, L. P. (2006). Experimental comparison of cluster ensemble methods. In 9th International conference on information fusion, 2006 (pp. 1–7). IEEE.

  • Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Scientific Reports, 2, 336.

    Article  Google Scholar 

  • Lawlor, N., Fabbri, A., Guan, P., George, J., & Karuturi, R. K. M. (2016). multiclust: An r-package for identifying biologically relevant clusters in cancer transcriptome profiles. Cancer Informatics, 15, 103.

    Article  Google Scholar 

  • LeCun, Y., & Cortes, C. (2010). Mnist handwritten digit database. AT&T Labs[Online]. http://yann.lecun.com/exdb/mnist. Accessed 20 Nov 2017.

  • Li, T., & Ding, C. (2008). 2008 SIAM international conference on data mining (p. 12), 24–26 April 2008, Atlanta, GA.

  • Li, T., Ogihara, M., & Zhu, S. (2006). Integrating features from different sources for music information retrieval. In Sixth international conference on data mining, 2006. ICDM’06 (pp. 372–381). IEEE,

  • Lichman, M. (2013). UCI machine learning repository. URL http://archive.ics.uci.edu/ml. Accessed 20 Nov 2017.

  • Liu, H., Cheng, G., & Wu, J. (2015). Consensus clustering on big data. In 12th International conference on service systems and service management (ICSSSM), 2015 (pp. 1–6). IEEE.

  • Liu, Y., Li, Z., Xiong, H., Gao, X., & Wu, J. (2010). Understanding of internal clustering validation measures. In IEEE 10th international conference on data mining (ICDM), 2010 (pp. 911–916). IEEE.

  • MacQueen, J., et al. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA (Vol. 1, pp. 281–297).

  • Mangasarian, O. L., Nick Street, W., & Wolberg, W. H. (1995). Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), 570–577.

  • McLachlan, G., & Peel, D. (2000). Multivariate normal mixtures. In Finite Mixture Models. Hoboken, NJ: Wiley. https://doi.org/10.1002/0471721182.ch3.

  • McQuitty, L. L. (1957). Elementary linkage analysis for isolating orthogonal and oblique types and typal relevancies. Educational and Psychological Measurement, 17, 207–229.

    Article  Google Scholar 

  • Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 2, 849–856.

    Google Scholar 

  • Nguyen, N., & Caruana, R. (2007). Consensus clusterings. In Seventh IEEE international conference on data mining, 2007. ICDM 2007 (pp. 607–612). IEEE

  • Race, S. L. (2014). Iterative consensus clustering. Raleigh: North Carolina State University.

    Google Scholar 

  • Rajaraman, A., Ullman, J. D., Ullman, J. D., & Ullman, J. D. (2012). Mining of massive datasets (Vol. 77). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. (2011). Internal versus external cluster validation indexes. International Journal of Computers and Communications, 5(1), 27–34.

    Google Scholar 

  • Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  • Sharma, S. (1996). Applied multivariate techniques. New York, NY: Wiley.

    Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Sneath, P. H. (1957). The application of computers to taxonomy. Journal of General Microbiology, 17(1), 201–226.

    Article  Google Scholar 

  • Strehl, A., & Ghosh, J. (2003). Cluster ensembles—a knowledge reuse framework for combining multiple partitions. The Journal of Machine Learning Research, 3, 583–617.

    Google Scholar 

  • Sukegawa, N., Yamamoto, Y., & Zhang, L. (2013). Lagrangian relaxation and pegging test for the clique partitioning problem. Advances in Data Analysis and Classification, 7(4), 363–391.

    Article  Google Scholar 

  • Topchy, A., Jain, A. K., & Punch, W. (2005). Clustering ensembles: Models of consensus and weak partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(12), 1866–1881.

    Article  Google Scholar 

  • Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and Artificial Intelligence, 25(03), 337–372.

    Article  Google Scholar 

  • Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems. San Francisco, CA: Morgan Kaufmann Publishers, Inc.

  • Weng, C. G., & Poon, J. (2008). A new evaluation measure for imbalanced datasets. In Proceedings of the 7th Australasian data mining conference (Vol. 87, pp. 27–32). Australian Computer Society, Inc.

  • Xanthopoulos, P. (2014). A review on consensus clustering methods. In T. M. Rassias, C. A. Floudas & S. Butenko (Eds.), Optimization in Science and Engineering (pp. 553–566). New York: Springer.

  • Yu, X., Yu, G., & Wang, J. (2017). Clustering cancer gene expression data by projective clustering ensemble. PloS One, 12(2), e0171429.

    Article  Google Scholar 

  • Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, 100(1), 68–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petros Xanthopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ünlü, R., Xanthopoulos, P. A weighted framework for unsupervised ensemble learning based on internal quality measures. Ann Oper Res 276, 229–247 (2019). https://doi.org/10.1007/s10479-017-2716-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-017-2716-8

Keywords

Navigation