Skip to main content
Log in

Design of an integrated single-input dual-output 3-switch buck converter based on sliding mode control

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents the design, implementation, and testing of a proof-of-concept monolithic single-input dual-output buck converter. The proposed architecture implements an analog hysteretic controller. This avoids the use of extra circuitry to generate a dedicated reference carrier signal to create the pulse-width modulated waveform, thus saving area, and reducing static power consumption. Furthermore, the proposed topology implements only three switches (instead of four switches in conventional solutions), and can save additional silicon area with proper design of the power switches in the voltage regulator. The IC prototype was fabricated in standard 0.5 μm CMOS technology (VTHN = 0.78 V, VTHP = −0.93 V), operates with a single voltage supply of 1.8 V, generates 1.2 and 0.9 V output-voltage levels, and supplies a maximum total current of 200 mA (100 mA provided by each output), reaching up to 88 % efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kursun, V. & Friedman, E. G. (2006). Multi-voltage CMOS circuit design. New York: Wiley.

    Book  Google Scholar 

  2. Kumar, P., Rojas-González, M. (2006). Novel 3-switch dual output buck voltage regulator. 21st Annual IEEE Applied Power Electronics Conference (APEC), (pp. 467–473).

  3. Kumar, P. (2009). Multiple output buck converter, US Patent 7511463.

  4. Chakraborty, S., Jain, A. K. & Mohan, N. (2006). A novel converter topology for multiple individually regulated outputs. IEEE Transactions on Power Electronics 21(2), 361–369.

    Article  Google Scholar 

  5. Chabini, N., Chabini, I., Aboulhamid, E. M. & Savaria, Y. (2003). Methods for minimizing dynamic power consumption in synchronous designs with multiple supply voltages. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 22(3), 346–351.

    Article  Google Scholar 

  6. Chang , J. & Pedram, M. (1997). Energy minimization using multiple supply voltages. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 5(4), 436–443.

    Article  Google Scholar 

  7. Usami, K., Igarashi, M., Minami, F., Ishikawa, T., Kanzawa, M., Ichida, M. & Nogami, K. (1998). Automated low-power technique exploiting multiple supply voltages applied to a media processor. IEEE Journal of Solid-State Circuits 33(3), 463–472.

    Article  Google Scholar 

  8. Dancy, A. P., Amirtharajah, R. & Chandrakasan, A. (2000). High-efficiency multiple-output DC–DC conversion for low-voltage systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8(3), 252–263.

    Article  Google Scholar 

  9. Bonizzoni, E., Borghetti, F., Malcovati, P., Maloberti, F., Niessen, B. (2007). A 200 mA 93 % peak efficiency single-inductor dual-output DC–DC buck converter. IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 526–527.

  10. Erickson, R. W. & Maksimovic, D. (2001). Fundamentals of Power Electronics, 2nd edn. Norwell: Kluwer Academic Publishers.

    Google Scholar 

  11. Utkin, V., Guldner, J. & Shi, J. (1999). SSliding mode control in electromechanical systems. Philadelphia: Taylor and Francis Inc.

    Google Scholar 

  12. Rojas-González, M. A. & Sánchez-Sinencio, E. (2007). Design of a class D audio amplifier IC using sliding mode control and negative feedback. IEEE Transactions on Consumer Electronics, 53(2), 609–617.

    Article  Google Scholar 

  13. Rojas-González, M. A. & Sánchez-Sinencio, E. (2009). Low-power high-efficiency class D audio power amplifiers. IEEE Journal of Solid-State Circuits, 44(12), 3272–3284.

    Article  Google Scholar 

  14. Johns, D., Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

    Google Scholar 

  15. Tan, S., Lai, Y.M., Cheung, M.K.H. & Tse, C.K. (2005). On the practical design of a sliding mode voltage controlled buck converter. IEEE Transaction on Power Electronics, 20(2), 425–437.

    Article  Google Scholar 

  16. Abo, A. M. & Gray, P. R. (1999). A 1.5 V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE Jornal of Solid-State-Circuits, 34(5), 599–606.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council on Science and Technology of Mexico (CONACYT) and Texas Instruments for partial funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Rojas-González.

Appendix 1 sliding mode controller

Appendix 1 sliding mode controller

In this appendix, the general form of the switching function in a SMC for asymptotic tracking is discussed [11]. The SMC can be derived if the system is expressed in its controllable canonical form

$$ \begin{array}{cc} {\dot{e}}_{a}(t) &= e_b(t) \\{\dot{e}}_{b}(t) &= e_c(t) \\ \vdots & \vdots \\ {\dot{e}}_{\rho-1}(t)&= e_{\rho}(t) \end{array} $$
(12)

where ea is the error function, eρ is the control input, and ρ is the order of the system to be controlled. The control input in Eq. (13) is the linear combination of all state canonical state variables where its coefficients are chosen in such way that the polynomial expressed in Eq. (14) meets the Hurwitz criterion, i.e. all its roots have negative real part.

$$ e_{\rho} = -(k_ae_a + k_be_b + \cdots + k_{\rho - 1}e_{\rho - 1}) $$
(13)
$$ P(s) = s^{\rho - 1} + k_{\rho - 1}s^{\rho - 2} + \cdots + k_{a} $$
(14)

The switching function in Eq. (15) represents the (ρ − 1) dimensional surface where the points of discontinuity merge.

$$ s(e_{a}, t) = (k_{a}e_{a} + k_{b}e_{b} + \cdots + k_{\rho - 1}e_{\rho - 1}) + e_{\rho} = 0 $$
(15)

For the particular case of ρ = 2, Eq. (15) simply becomes Eqs. (5) and (6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas-González, M.A., Torres, J., Kumar, P. et al. Design of an integrated single-input dual-output 3-switch buck converter based on sliding mode control. Analog Integr Circ Sig Process 76, 307–319 (2013). https://doi.org/10.1007/s10470-013-0039-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-013-0039-5

Keywords

Navigation