Skip to main content
Log in

On the limiting distribution of sample central moments

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We investigate the limiting behavior of sample central moments, examining the special cases where the limiting (as the sample size tends to infinity) distribution is degenerate. Parent (non-degenerate) distributions with this property are called singular, and we show in this article that the singular distributions contain at most three supporting points. Moreover, using the delta-method, we show that the (second-order) limiting distribution of sample central moments from a singular distribution is either a multiple, or a difference of two multiples of independent Chi-square random variables with one degree of freedom. Finally, we present a new characterization of normality through the asymptotic independence of the sample mean and all sample central moments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afendras, G. (2013). Moment-based inference for Pearson’s quadratic \(q\) subfamily of distributions. Communications in Statistics: Theory and Methods, 42(12), 2271–2280.

    Article  MathSciNet  Google Scholar 

  • Afendras, G., Markatou, M. (2016). Uniform integrability of the OLS estimators, and the convergence of their moments. Test, 25(4), 775–784.

    Article  MathSciNet  Google Scholar 

  • Billingsley, P. (1995). Probability and measure (3rd ed.). New York: Wiley.

  • Geary, R. C. (1936). The distribution of “Student’s” ratio for non-normal samples. Journal of the Royal Statistical Society Series B, 3, 178–184.

    MATH  Google Scholar 

  • Gut, A. (1988). Stopped random walks: Limit theorems and applications. New York: Springer.

    Book  Google Scholar 

  • Haug, S., Klüppelberg, C., Lindner, A., Zapp, M. (2007). Method of moment estimation in the COGARCH(1,1) model. The Econometrics Journal, 10(2), 320–341.

    Article  MathSciNet  Google Scholar 

  • Kagan, A. M., Linnik, Y. V., Rao, C. R. (1973). Characterization problems in mathematical statistics. New York: Wiley.

    MATH  Google Scholar 

  • Kourouklis, S. (2012). A new estimator of the variance based on minimizing mean squared error. The American Statistician, 66(4), 234–236.

    Article  MathSciNet  Google Scholar 

  • Laha, R. G., Lukacs, E., Newman, M. (1960). On the independence of a sample central moment and the sample mean. The Annals of Mathematical Statistics, 31, 1028–1033.

    Article  MathSciNet  Google Scholar 

  • Lehmann, E. L. (1999). Elements of large-sample theory. New York: Springer.

    Book  Google Scholar 

  • Pewsey, A. (2005). The large-sample distribution of the most fundamental of statistical summaries. Journal of Statistical Planning and Inference, 134, 434–444.

    Article  MathSciNet  Google Scholar 

  • Stefanski, L. A., Boos, D. D. (2002). The calculus of M-estimation. The American Statistician, 56(1), 29–38.

    Article  MathSciNet  Google Scholar 

  • van der Vaart, A. W. (1998). Asymptotic statistics. New York: Cambridge University Press.

    Book  Google Scholar 

  • Wu, S.-F., Liang, M.-C. (2010). A note on the asymptotic distribution of the process capability index Cpkm. Journal of Statistical Computation and Simulation, 80, 227–235.

    Article  MathSciNet  Google Scholar 

  • Yatracos, Y. (2005). Artificially augmented samples, shrinkage, and mean squared error reduction. Journal of the American Statistical Association, 100, 1168–1175.

    Article  MathSciNet  Google Scholar 

  • Zinger, A. A. (1958). Independence of quasi-polynomial statistics and analytical properties of distributions. Theory of Probability & Its Applications, 3(3), 247–265.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Papageorgiou for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickos Papadatos.

Appendix A Proofs

Appendix A Proofs

We shall make use of the following Lemmas. For the proof of Lemma 6 see, e.g., Gut (1988, p. 18); for more general results, see Afendras and Markatou (2016).

Lemma 6

If \(X,X_1,\ldots ,X_n\) are independent and identically distributed with \({\mathbb {E}}(X)=\mu \), \({\textsf {Var}}(X)=\sigma ^2\) and \({\mathbb {E}}|X|^\delta <\infty \) for some \(\delta \ge 2\), then, for any \(\alpha \in (0,\delta ]\),

$$\begin{aligned} {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^\alpha \rightarrow \sigma ^\alpha {\mathbb {E}}|Z|^\alpha , \end{aligned}$$

where \(Z\sim N(0,1)\) and \(\bar{X}_n=(X_1+\cdots +X_n)/n\).

Lemma 7

If \(X,X_1,\ldots ,X_n\) are independent and identically distributed with \({\mathbb {E}}(X)=\mu \) and \({\mathbb {E}}|X|^\nu <\infty \) for some \(\nu \in \{2,3,\ldots \}\), then, for any \(j\in \{2,\ldots ,\nu \}\),

$$\begin{aligned} {\mathbb {E}}|m_{j,n}|^{{\nu }/{j}} \le {\mathbb {E}}|X-\mu |^{\nu }, \end{aligned}$$
(31)

where \(m_{j,n}=n^{-1}\sum _{i=1}^n(X_i-\mu )^j\).

Proof

If \(j=\nu \), then (31) follows by taking expectations to the obvious inequality \(|m_{j,n}|\le \frac{1}{n}\sum _{i=1}^n|X_i-\mu |^j=\frac{1}{n} \sum _{i=1}^n|X_i-\mu |^{\nu }\). If \(j<\nu \) (and thus, \(\nu \ge 3\)), we apply the inequality

$$\begin{aligned} \left| \sum _{i=1}^{n} x_i\right| ^p \le \left( \sum _{i=1}^{n} |x_i|\right) ^p \le n^{p-1} \sum _{i=1}^n |x_i|^p, \quad p>1, \end{aligned}$$

(the last inequality is a by-product of Hölder’s inequality) for \(p=\nu /j\) and \(x_i=(X_i-\mu )^j\). Then, we have

$$\begin{aligned} {\mathbb {E}}|m_{j,n}|^{{\nu }/{j}}&= \frac{1}{n^{{\nu }/{j}}} {\mathbb {E}}\left| \sum _{i=1}^n (X_i-\mu )^j\right| ^{{\nu }/{j}} \le \frac{1}{n^{{\nu }/{j}}} {\mathbb {E}}\left( \sum _{i=1}^n |X_i-\mu |^j\right) ^{{\nu }/{j}} \\&\le \frac{1}{n^{{\nu }/{j}}} {\mathbb {E}}\left( n^{{\nu }/{j}-1} \sum _{i=1}^n |X_i-\mu |^\nu \right) =\frac{1}{n} {\mathbb {E}}\left( \sum _{i=1}^n |X_i-\mu |^\nu \right) \\ {}&={\mathbb {E}}|X-\mu |^{\nu }. \end{aligned}$$

\(\square \)

Proof of Proposition 2

(a) Observe that the statement in Proposition 2(a) is equivalent to

$$\begin{aligned} {\mathbb {E}}[\surd {n}(M_{k,n}-\mu _k)]\rightarrow 0. \end{aligned}$$
(32)

Writing

$$\begin{aligned} M_{k,n}-\mu _k= (m_{k,n}-\mu _k)+(-\,1)^{k-1}(k-1) m_{1,n}^k +\sum _{j=2}^{k-1} (-\,1)^{k-j} {k\atopwithdelims ()j} m_{1,n}^{k-j} m_{j,n},\qquad \end{aligned}$$
(33)

it suffices to verify that

  1. (i)

    \(\surd {n}{\mathbb {E}}(m_{k,n}-\mu _k)=0\),

  2. (ii)

    \(\surd {n}{\mathbb {E}}(m_{1,n}^k)\rightarrow 0\),

  3. (iii)

    \(\surd {n}{\mathbb {E}}(m_{1,n}^{k-j} m_{j,n}) \rightarrow 0\), \(j=2,\ldots ,k-2\) (provided \(k\ge 4\)), and

  4. (iv)

    \(\surd {n}{\mathbb {E}}(m_{1,n} m_{k-1,n}) \rightarrow 0\) (provided \(k\ge 3\)).

Now, (i) is obvious (since \({\mathbb {E}}(m_{k,n})=\mu _k\)), (iv) follows from \({\mathbb {E}}(m_{1,n} m_{k-1,n})=\mu _k/n\) and (ii) can be seen by using Lemma 6 with \(\alpha =\delta =k\), which shows that

$$\begin{aligned} \left| n^{k/2}{\mathbb {E}}\left( m_{1,n}^k\right) \right| \le n^{k/2} {\mathbb {E}}|m_{1,n}|^k={\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^k\rightarrow \sigma ^{k}{\mathbb {E}}|Z|^k<\infty , \end{aligned}$$

and thus, \(|\surd {n}{\mathbb {E}}(m_{1,n}^k)|\le n^{-(k-1)/2}{\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^k\rightarrow 0\). To show (iii), we assume that \(k\ge 4\) and \(2\le j\le k-2\), and we use Hölder’s inequality with \(p=k/(k-j)>1\), Lemma 7 with \(\nu =k\) and Lemma 6 with \(\alpha =\delta =k\) to obtain

$$\begin{aligned}&\left| \surd {n}{\mathbb {E}}\left( m_{1,n}^{k-j}m_{j,n}\right) \right| \\&\quad \le {\surd {n}{\mathbb {E}}\left( |m_{1,n}|^{k-j} |m_{j,n}|\right) \le \surd {n}\left( {\mathbb {E}}|m_{1,n}|^k\right) ^{{(k-j)}/{k}} \left( {\mathbb {E}}|m_{j,n}|^{{k}/{j}}\right) ^{{j}/{k}} } \\&\quad \le \surd {n} \left[ n^{-k/2}{\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^k\right] ^{{(k-j)}/{k}} \left( {\mathbb {E}}|X-\mu |^k\right) ^{{j}/{k}}\\&\quad ={n^{-(k-1-j)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^k\right] ^{{(k-j)}/{k}} \left( {\mathbb {E}}|X-\mu |^k\right) ^{{j}/{k}} } \\&\quad = {n^{-(k-1-j)/2} O(1)\rightarrow 0,} \end{aligned}$$

because \({\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^k\rightarrow \sigma ^{k}{\mathbb {E}}|Z|^k<\infty \).

(b) Observe that the statement in Proposition 2(b) is equivalent to

$$\begin{aligned} \mathsf {Cov}\left[ \surd {n}\left( \bar{X}_n-\mu \right) ,\surd {n}(M_{k,n}-\mu _k)\right] \rightarrow \mu _{k+1}-k\sigma ^2\mu _{k-1}, \end{aligned}$$
(34)

and since \({\mathbb {E}}(\bar{X}_n-\mu )=0\), it suffices to verify that

$$\begin{aligned} n{\mathbb {E}}\left[ \left( \bar{X}_n-\mu \right) (M_{k,n}-\mu _k)\right] =n{\mathbb {E}}[m_{1,n}(M_{k,n}-\mu _k)]\rightarrow \mu _{k+1}-k\sigma ^2\mu _{k-1}. \end{aligned}$$
(35)

If \(k=2\), then \(n{\mathbb {E}}[m_{1,n}(M_{2,n}-\mu _2)]=n{\mathbb {E}}[(\bar{X}_n-\mu )(m_{2,n}-\mu _2)] -n{\mathbb {E}}(\bar{X}_n-\mu )^3=\mu _3-n{\mathbb {E}}(\bar{X}_n-\mu )^3\), and it easily seen, by Lemma 6 with \(\alpha =\delta =3\), that \(|n{\mathbb {E}}(\bar{X}_n-\mu )^3| \le n^{-1/2} {\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^3\rightarrow 0\); thus, \(n{\mathbb {E}}[m_{1,n}(M_{2,n}-\mu _2)]\rightarrow \mu _3\). Since \(\mu _1=0\), (35) is satisfied for \(k=2\).

If \(k=3\), \(n{\mathbb {E}}[m_{1,n}(M_{3,n}-\mu _3)]=n{\mathbb {E}}[(\bar{X}_n-\mu )(m_{3,n}-\mu _3)] +2n{\mathbb {E}}(\bar{X}_n-\mu )^4-3n {\mathbb {E}}[m_{2,n}(\bar{X}_n-\mu )^2]\), and it is easy to see that \(n{\mathbb {E}}[(\bar{X}_n-\mu )(m_{3,n}-\mu _3)]=\mu _4\). Also, by Lemma 6 with \(\alpha =\delta =4\), \(2n{\mathbb {E}}(\bar{X}_n-\mu )^4\rightarrow 0\). Finally, \(-\,3n{\mathbb {E}}[m_{2,n}(\bar{X}_n-\mu )^2]=-\,3[\mu _4+(n-1)\mu _2^2]/n\rightarrow -3 \mu _2^2=-\,3\sigma ^4\), which verifies (35) for \(k=3\).

In the general case when \(k\ge 4\), we write \(M_{k,n}-\mu _k\) as in (33) and we observe that for (35) to hold it suffices to verify that

  1. (i)

    \(n {\mathbb {E}}[m_{1,n}(m_{k,n}-\mu _k)]=\mu _{k+1}\),

  2. (ii)

    \(n{\mathbb {E}}(m_{1,n}^{k+1}) \rightarrow 0\),

  3. (iii)

    \(n {\mathbb {E}}(m_{1,n}^{k+1-j} m_{j,n}) \rightarrow 0\), \(j=2,\ldots ,k-2\), and

  4. (iv)

    \(n{\mathbb {E}}(m_{1,n}^2 m_{k-1,n}) \rightarrow \sigma ^2 \mu _{k-1}\).

Calculating \({\mathbb {E}}[m_{1,n}(m_{k,n}-\mu _k)]={\mathbb {E}}[(\bar{X}_n-\mu )(m_{k,n}-\mu _k)] ={\mathbb {E}}[(\bar{X}_n-\mu )m_{k,n}] = n^{-2}\sum _{i_1=1}^n\sum _{i_2=1}^n {\mathbb {E}}[(X_{i_1}-\mu )(X_{i_2}-\mu )^k] ={\mu _{k+1}}/{n}\), we conclude (i), while (ii) follows by using Lemma 6 with \(\alpha =\delta =k+1\). Also,

$$\begin{aligned} n{\mathbb {E}}\left( m_{1,n}^2 m_{k-1,n}\right)= & {} \frac{1}{n^2}\sum _{i_1=1}^n\sum _{i_2=1}^n\sum _{i_3=1}^n {\mathbb {E}}\left[ \left( X_{i_1}-\mu \right) \left( X_{i_2}-\mu \right) \left( X_{i_3}-\mu \right) ^{k-1}\right] \\= & {} { \frac{1}{n^2}\left[ n \mu _{k+1}+n(n-1)\sigma ^2\mu _{k-1}\right] \rightarrow \sigma ^2\mu _{k-1}, } \end{aligned}$$

which shows that (iv) is satisfied, and it remains to verify (iii). To this end, we use Hölder’s inequality with \(p=(k+1)/(k+1-j)>1\) and Lemma 7 with \(\nu =k+1\) to obtain

$$\begin{aligned}&\left| n {\mathbb {E}}\left( m_{1,n}^{k+1-j}m_{j,n}\right) \right| \\&\quad \le { n {\mathbb {E}}|m_{1,n}|^{k+1-j} |m_{j,n}| \le n \left( {\mathbb {E}}|m_{1,n}|^{k+1}\right) ^{{(k+1-j)}/{(k+1)}} \left( {\mathbb {E}}|m_{j,n}|^{(k+1)/{j}}\right) ^{{j}/{(k+1)}} }\\&\quad \le { n \left[ n^{-(k+1)/2}{\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{k+1}\right] ^{{(k+1-j)}/{(k+1)}} \left( {\mathbb {E}}|X-\mu |^{k+1}\right) ^{{j}/{(k+1)}} }\\&\quad = { n^{-(k-1-j)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{k+1}\right] ^{{(k+1-j)}/{(k+1)}} \left( {\mathbb {E}}|X-\mu |^{k+1}\right) ^{{j}/{(k+1)}} \rightarrow 0, } \end{aligned}$$

because \(n^{-(k-1-j)/2}\rightarrow 0\); and, by Lemma 6 with \(\alpha =\delta =k+1\), \({\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^{k+1}\rightarrow \sigma ^{k+1}{\mathbb {E}}|Z|^{k+1} <\infty \).

(c) Without loss of generality assume that \(2\le r\le k\) and observe that the first statement of Proposition 2(c) is equivalent to

$$\begin{aligned} \mathsf {Cov}[\surd {n}(M_{r,n}-\mu _r),\surd {n}(M_{k,n}-\mu _k)]\rightarrow v_{rk}. \end{aligned}$$
(36)

Since \({\mathbb {E}}|X|^{r+k}<\infty \), (32) shows that \({\mathbb {E}}[\surd {n}(M_{k,n}-\mu _k)]\rightarrow 0\) and \({\mathbb {E}}[\surd {n}(\bar{X}_n-\mu )]\rightarrow 0\), and it suffices to verify that

$$\begin{aligned} n{\mathbb {E}}[(M_{r,n}-\mu _r)(M_{k,n}-\mu _k)] \rightarrow v_{rk}= & {} \mu _{r+k}-\mu _r\mu _k-r\mu _{r-1}\mu _{k+1}\nonumber \\&-\,k\mu _{r+1}\mu _{k-1}+rk\sigma ^2\mu _{r-1}\mu _{k-1}.\qquad \end{aligned}$$
(37)

The proof can be deduced by showing that (37) holds for each one of the cases \(r=k=2\); \(r=2\), \(k=3\); \(r=k=3\); \(r=2\), \(k\ge 4\); \(r=3\), \(k\ge 4\); \(4\le r\le k\). In the following we shall present the details only for the case where \(4\le r\le k\); the other cases can be treated using similar (and simpler) arguments.

Assume now that \(4\le r\le k\). From (33), we have

$$\begin{aligned} M_{r,n}-\mu _r= & {} (m_{r,n}-\mu _r)-rm_{1,n}m_{r-1,n}\nonumber \\&+\sum _{j_1=2}^{r-2} (-\,1)^{r-j_1} {r\atopwithdelims ()j_1} m_{1,n}^{r-j_1} m_{j_1,n} +(-\,1)^{r-1}(r-1) m_{1,n}^r, \end{aligned}$$
(38)
$$\begin{aligned} M_{k,n}-\mu _k= & {} (m_{k,n}-\mu _k)-km_{1,n}m_{k-1,n}\nonumber \\&+\sum _{j_2=2}^{k-2} (-\,1)^{k-j_2} {k\atopwithdelims ()j_2} m_{1,n}^{k-j_2} m_{j_2,n} +(-\,1)^{k-1}(k-1) m_{1,n}^k. \end{aligned}$$
(39)

We shall show that the asymptotic covariance in (36) can be determined by using only the first two terms in (38) and (39). Indeed, it is easily seen that (37) holds true if it can be shown that

  1. (i)

    \(n {\mathbb {E}}[(m_{r,n}-\mu _r)(m_{k,n}-\mu _k)]=\mu _{r+k}-\mu _r\mu _k\),

  2. (ii)

    \(n{\mathbb {E}}[m_{1,n}m_{k-1,n}(m_{r,n}-\mu _r)] \rightarrow \mu _{r+1}\mu _{k-1}\),

  3. (iii)

    \(n{\mathbb {E}}[m_{1,n}m_{r-1,n}(m_{k,n}-\mu _k)] \rightarrow \mu _{r-1}\mu _{k+1}\),

  4. (iv)

    \(n{\mathbb {E}}(m_{1,n}^2m_{r-1,n}m_{k-1,n}) \rightarrow \sigma ^2 \mu _{r-1}\mu _{k-1}\),

  5. (v)

    \(n {\mathbb {E}}[m_{1,n}^{k-j_2} m_{j_2,n}(m_{r,n}-\mu _r)] \rightarrow 0\), \(j_2=2,\ldots ,k-2\),

  6. (vi)

    \(n{\mathbb {E}}[m_{1,n}^k (m_{r,n}-\mu _r)] \rightarrow 0\),

  7. (vii)

    \(n {\mathbb {E}}(m_{1,n}^{k+1-j_2} m_{j_2,n}m_{r-1,n}) \rightarrow 0\), \(j_2=2,\ldots ,k-2\),

  8. (viii)

    \(n{\mathbb {E}}(m_{1,n}^{k+1} m_{r-1,n}) \rightarrow 0\),

  9. (ix)

    \(n {\mathbb {E}}[m_{1,n}^{r-j_1} m_{j_1,n}(m_{k,n}-\mu _k)] \rightarrow 0\), \(j_1=2,\ldots ,r-2\),

  10. (x)

    \(n{\mathbb {E}}(m_{1,n}^{r+1-j_1} m_{j_1,n} m_{k-1,n}) \rightarrow 0\), \(j_1=2,\ldots ,r-2\),

  11. (xi)

    \(n {\mathbb {E}}(m_{1,n}^{r+k-j_1-j_2} m_{j_1,n}m_{j_2,n}) \rightarrow 0\), \(j_1=2,\ldots ,r-2\), \(j_2=2,\ldots ,k-2\),

  12. (xii)

    \(n{\mathbb {E}}(m_{1,n}^{r+k-j_1} m_{j_1,n}) \rightarrow 0\), \(j_1=2,\ldots ,r-2\),

  13. (xiii)

    \(n {\mathbb {E}}[m_{1,n}^{r} (m_{k,n}-\mu _k)] \rightarrow 0\),

  14. (xiv)

    \(n{\mathbb {E}}(m_{1,n}^{r+1} m_{k-1,n}) \rightarrow 0\),

  15. (xv)

    \(n {\mathbb {E}}(m_{1,n}^{r+k-j_2} m_{j_2,n}) \rightarrow 0\), \(j_2=2,\ldots ,k-2\), and

  16. (xvi)

    \(n{\mathbb {E}}(m_{1,n}^{r+k}) \rightarrow 0\).

We now proceed to verify (i)–(xvi). Since \({\mathbb {E}}(m_{r,n})=\mu _r\) and \({\mathbb {E}}(m_{k,n})=\mu _k\), we have

$$\begin{aligned}&n{\mathbb {E}}[(m_{r,n}-\mu _r)(m_{k,n}-\mu _k)] \\&\quad = { n[{\mathbb {E}}(m_{r,n}m_{k,n})-\mu _r\mu _k] = n\left\{ \frac{1}{n^2}\sum _{i_1=1}^n\sum _{i_2=1}^n {\mathbb {E}}\left[ \left( X_{i_1}-\mu \right) ^r\left( X_{i_2}-\mu \right) ^k\right] -\mu _r\mu _k\right\} } \\&\quad = { n\left\{ \frac{1}{n^2}[n\mu _{r+k}+n(n-1)\mu _r\mu _k]-\mu _r\mu _k\right\} =\mu _{r+k}-\mu _r\mu _k, } \end{aligned}$$

which shows (i). Also, (ii), (iii) and (iv) follow by straightforward computations; e.g., for (ii) we have

$$\begin{aligned}&n{\mathbb {E}}[m_{1,n}m_{k-1,n}(m_{r,n}-\mu _r)] \\&\quad =-\,\mu _r\mu _k +\frac{\mu _{r+k}+(n-1)(\mu _{r+1}\mu _{k-1}+ \mu _{r}\mu _{k})}{n}\rightarrow \mu _{r+1}\mu _{k-1}, \end{aligned}$$

while (iii) is similar to (ii), and (iv) can be deduced from

$$\begin{aligned}&n{\mathbb {E}}\left( m_{1,n}^2m_{r-1,n}m_{k-1,n}\right) \\&\quad =\frac{1}{n^3}\left[ n(n-1)(n-2)\sigma ^2\mu _{r-1}\mu _{k-1} +o\left( n^3\right) \right] \rightarrow \sigma ^2\mu _{r-1}\mu _{k-1}. \end{aligned}$$

The vanishing limits (vi)–(viii) and (x)–(xvi) are by-products of Lemmas 6 and 7 with \(\alpha =\delta =\nu =r+k\), since \({\mathbb {E}}|X|^{r+k}<\infty \). Indeed, we have \(|n{\mathbb {E}}(m_{1,n}^{r+k})|\le n{\mathbb {E}}|m_{1,n}|^{r+k} =n^{-(r+k-2)/2}{\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^{r+k}\rightarrow 0\), which verifies (xvi). Also, using Hölder’s inequality with \(p=(r+k)/(r+k-j_2)>1\), we obtain (xv) as follows:

$$\begin{aligned}&\left| n {\mathbb {E}}\left( m_{1,n}^{r+k-j_2}m_{j_2,n}\right) \right| \\&\quad \le {n {\mathbb {E}}\left( |m_{1,n}|^{r+k-j_2} |m_{j_2,n}|\right) \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+k-j_2}{r+k}} \left( {\mathbb {E}}|m_{j_2,n}|^{\frac{r+k}{j_2}}\right) ^{\frac{j_2}{r+k}}} \\&\quad \le n\left[ n^{-(r+k)/2}{\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r+k-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_2}{r+k}} \\&\quad ={n^{-(r+k-j_2-2)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r+k-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_2}{r+k}} \rightarrow 0,} \end{aligned}$$

because \(n^{-(r+k-j_2-2)/2}\rightarrow 0\) and \({\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^{r+k}\rightarrow \sigma ^{r+k}{\mathbb {E}}|Z|^{r+k} <\infty \); (xii) is similar to (xv). For the limit (xiv) we have

$$\begin{aligned}&\left| n{\mathbb {E}}\left[ m_{1,n}^{r+1}m_{k-1,n}\right] \right| \\&\quad \le { n{\mathbb {E}}\left( |m_{1,n}|^{r+1} |m_{k-1,n}|\right) \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+1}{r+k}} \left( {\mathbb {E}}|m_{k-1,n}|^{\frac{r+k}{k-1}}\right) ^{\frac{k-1}{r+k}} }\\&\quad \le { n^{-(r-1)/2}\left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r+1}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{k-1}{r+k}} \rightarrow 0, } \end{aligned}$$

and similarly for (viii). In order to prove (xiii), it is sufficient to show that \(n{\mathbb {E}}[m_{1,n}^r m_{k,n}]\rightarrow 0\) and \(n{\mathbb {E}}(m_{1,n}^r)\rightarrow 0\). The second limit is obvious since, as for (xvi), one can easily verify that \(|n{\mathbb {E}}(m_{1,n}^r)|\le n^{-(r-2)/2}{\mathbb {E}}|\surd {n}(\bar{X}_n-\mu )|^r =n^{-(r-2)/2}O(1)\rightarrow 0\). For the first limit, we have

$$\begin{aligned} \left| n{\mathbb {E}}\left( m_{1,n}^{r}m_{k,n}\right) \right|\le & {} { n{\mathbb {E}}\left( |m_{1,n}|^{r} |m_{k,n}|\right) \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r}{r+k}} \left( {\mathbb {E}}|m_{k,n}|^{\frac{r+k}{k}}\right) ^{\frac{k}{r+k}} }\\\le & {} { n^{-(r-2)/2}\left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{k}{r+k}} \rightarrow 0. } \end{aligned}$$

Limit (vi) is similar to (xiii), and its proof is omitted. Regarding (xi), we have

$$\begin{aligned}&\left| n{\mathbb {E}}\left( m_{1,n}^{r+k-j_1-j_2}m_{j_1,n}m_{j_2,n}\right) \right| \\&\quad \le n{\mathbb {E}}\left( |m_{1,n}|^{r+k-j_1-j_2} |m_{j_1,n}m_{j_2,n}|\right) \\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+k-j_1-j_2}{r+k}} \left( {\mathbb {E}}|m_{j_1,n}m_{j_2,n}|^{\frac{r+k}{j_1+j_2}}\right) ^{\frac{j_1+j_2}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+k-j_1-j_2}{r+k}} \left[ \left( {\mathbb {E}}|m_{j_1,n}|^{\frac{r+k}{j_1}}\right) ^{\frac{j_1}{j_1+j_2}} \left( {\mathbb {E}}|m_{j_2,n}|^{\frac{r+k}{j_2}}\right) ^{\frac{j_2}{j_1+j_2}}\right] ^{\frac{j_1+j_2}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+k-j_1-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_1+j_2}{r+k}} \\&\quad = n^{-(r+k-j_1-j_2-2)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r+k-j_1-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_1+j_2}{r+k}} \rightarrow 0. \end{aligned}$$

Similarly, for (x) we have

$$\begin{aligned}&\left| n{\mathbb {E}}\left( m_{1,n}^{r+1-j_1}m_{j_1,n}m_{k-1,n}\right) \right| \\&\quad \le n\left( {\mathbb {E}}|m_{1,n}|^{r+1-j_1} |m_{j_1,n}m_{k-1,n}|\right) \\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+1-j_1}{r+k}} \left( {\mathbb {E}}|m_{j_1,n}m_{k-1,n}|^{\frac{r+k}{j_1+k-1}}\right) ^{\frac{j_1+k-1}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+1-j_1}{r+k}} \left[ \left( {\mathbb {E}}|m_{j_1,n}|^{\frac{r+k}{j_1}}\right) ^{\frac{j_1}{j_1+k-1}} \left( {\mathbb {E}}|m_{k-1,n}|^{\frac{r+k}{k-1}}\right) ^{\frac{k-1}{j_1+k-1}}\right] ^{\frac{j_1+k-1}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{r+1-j_1}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_1+k-1}{r+k}}\\&\quad = n^{-(r-j_1-1)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{r+1-j_1}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_1+k-1}{r+k}} \rightarrow 0, \end{aligned}$$

while (vii) is similar to (x).

It remains to verify (v) and (ix); but, since they are similar, it suffices to prove (v). If \(j_2\in \{2,\ldots ,k-3\}\) (and hence, \(k\ge 5\) and \(j_2<k-2\)), we have

$$\begin{aligned}&\left| n{\mathbb {E}}\left[ m_{1,n}^{k-j_2}m_{j_2,n}(m_{r,n}-\mu _r)\right] \right| \\&\quad \le n{\mathbb {E}}\left( |m_{1,n}|^{k-j_2}|m_{j_2,n}m_{r,n}|\right) + n |\mu _r| {\mathbb {E}}\left( |m_{1,n}|^{k-j_2}|m_{j_2,n}|\right) , \end{aligned}$$

and it suffices to prove that \(n{\mathbb {E}}(|m_{1,n}|^{k-j_2}|m_{j_2,n}m_{r,n}|)\rightarrow 0\) and \(n {\mathbb {E}}(|m_{1,n}|^{k-j_2}|m_{j_2,n}|)\rightarrow 0\). For the first quantity, we have

$$\begin{aligned}&n{\mathbb {E}}\left( \left| m_{1,n}\right| ^{k-j_2}\left| m_{j_2,n}m_{r,n}\right| \right) \\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{k-j_2}{r+k}} \left( {\mathbb {E}}|m_{j_2,n}m_{r,n}|^{\frac{r+k}{r+j_2}}\right) ^{\frac{r+j_2}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{k-j_2}{r+k}} \left[ \left( {\mathbb {E}}|m_{j_2,n}|^{\frac{r+k}{j_2}}\right) ^{\frac{j_2}{r+j_2}} \left( {\mathbb {E}}|m_{r,n}|^{\frac{r+k}{r}}\right) ^{\frac{r}{r+j_2}}\right] ^{\frac{r+j_2}{r+k}}\\&\quad \le n^{-(k-j_2-2)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{k-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{r+j_2}{r+k}} \rightarrow 0, \end{aligned}$$

because \(k-j_2-2>0\). Similarly, for the second quantity we have

$$\begin{aligned}&n{\mathbb {E}}\left( \left| m_{1,n}\right| ^{k-j_2}\left| m_{j_2,n}\right| \right) \\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{k-j_2}{r+k}} \left( {\mathbb {E}}|m_{j_2,n}|^{\frac{r+k}{r+j_2}}\right) ^{\frac{r+j_2}{r+k}}\\&\quad \le n \left( {\mathbb {E}}|m_{1,n}|^{r+k}\right) ^{\frac{k-j_2}{r+k}} \left( {\mathbb {E}}|m_{j_2,n}|^{\frac{r+k}{j_2}}\right) ^{\frac{j_2}{r+k}}\\&\quad \le n^{-(k-j_2-2)/2} \left[ {\mathbb {E}}\left| \surd {n}\left( \bar{X}_n-\mu \right) \right| ^{r+k}\right] ^{\frac{k-j_2}{r+k}} \left( {\mathbb {E}}|X-\mu |^{r+k}\right) ^{\frac{j_2}{r+k}} \rightarrow 0, \end{aligned}$$

because \(k-j_2-2>0\). Finally, it remains to study the limit (v) when \(j_2=k-2\); in this case the above limits do not necessarily vanish. However, since \(j_2=k-2\) we have

$$\begin{aligned} n{\mathbb {E}}\left[ m_{1,n}^{k-j_2}m_{j_2,n}(m_{r,n}-\mu _r)\right] =n{\mathbb {E}}\left( m_{1,n}^2 m_{r,n} m_{k-2,n}\right) -n\mu _r {\mathbb {E}}\left( m_{1,n}^2m_{k-2,n}\right) , \end{aligned}$$

and direct computations show that

$$\begin{aligned} n{\mathbb {E}}\left( m_{1,n}^2 m_{r,n} m_{k-2,n}\right) =\frac{1}{n^3}\left[ n(n-1)(n-2) \sigma ^2\mu _r\mu _{k-2}+o\left( n^3\right) \right] \rightarrow \sigma ^2\mu _r\mu _{k-2} \end{aligned}$$

and

$$\begin{aligned} n{\mathbb {E}}\left( m_{1,n}^2 m_{k-2,n}\right) =\frac{1}{n^2}\left[ n(n-1) \sigma ^2\mu _{k-2}+o\left( n^2\right) \right] \rightarrow \sigma ^2\mu _{k-2}. \end{aligned}$$

Hence, when \(j_2=k-2\) we have

$$\begin{aligned} n{\mathbb {E}}\left[ m_{1,n}^{k-j_2}m_{j_2,n}(m_{r,n}-\mu _r)\right]= & {} n{\mathbb {E}}\left( m_{1,n}^2 m_{r,n} m_{k-2,n}\right) \\&-\,n\mu _r {\mathbb {E}}\left( m_{1,n}^2 m_{k-2,n}\right) \rightarrow \sigma ^2\mu _r\mu _{k-2} \\&- \,\mu _r \sigma ^2\mu _{k-2}=0, \end{aligned}$$

and the proof is complete. \(\square \)

Proof of Theorem 3

Observe that \(M_{k,n}-\mu _k=g_{k,k}({\varvec{m}}_{k,n})-g_{k,k}(\pmb {\mu }_{k})\); see in Sect. 2. Also, , where , see (1). Hence, Lemma 5 applies to \({\varvec{X}}_n={\varvec{m}}_{k,n}\), provided (21) is fulfilled for \({\varvec{m}}_{k,n}\), i.e., provided that . Because \(\nabla g_{k,k}(\pmb {\mu }_{k})=(-\,k\mu _{k-1},0,\ldots ,0,1)'\), we get \([\nabla g_{k,k}(\pmb {\mu }_{k})]'({\varvec{m}}_{k,n}-\pmb {\mu }_{k})=-\,k\mu _{k-1}m_{1,n}+(m_{k,n}-\mu _k)\). Since \({\mathbb {E}}(m_{j,n})=\mu _j\) for all n and j, we get \({\mathbb {E}}[-\,k\mu _{k-1}m_{1,n}+(m_{k,n}-\mu _k)]=0\). Also,

$$\begin{aligned}&{\textsf {Var}}[-\,k\mu _{k-1}m_{1,n}+(m_{k,n}-\mu _k)]\\&\quad = { k^2 \mu _{k-1}^2 {\textsf {Var}}(m_{1,n}) + {\textsf {Var}}(m_{k,n})-2k\mu _{k-1}\mathsf {Cov}(m_{1,n},m_{k,n}) } \\&\quad = k^2 \mu _{k-1}^2 \frac{\sigma ^2}{n} + \frac{\mu _{2k}-\mu _k^2}{n}-2k\mu _{k-1}\frac{\mu _{k+1}}{n} \\&\quad = \frac{1}{n}\left( k^2 \mu _{k-1}^2 \sigma ^2 + \mu _{2k}-\mu _k^2-2k\mu _{k-1}\mu _{k+1}\right) \\&\quad = \frac{1}{n}\left[ \mu _{2k}-\mu _k^2+k\mu _{k-1} \left( k\sigma ^2\mu _{k-1}-2\mu _{k+1}\right) \right] = \frac{v_k^2}{n} =0, \end{aligned}$$

because \(v_k^2=0\) by the assumed singularness. Therefore, \([\nabla g_{k,k}(\pmb {\mu }_{k})]'({\varvec{m}}_{k,n}-\pmb {\mu }_{k})=0\) with probability one and, thus, in a trivial sense. Now, a simple calculation, since \(\nabla g_{k,k}(\pmb {\mu }_{k})=(-\,k\mu _{k-1},0,\ldots ,0,1)'\), shows that

$$\begin{aligned} \mathbf {H}_k(\pmb {\mu }_{k})= \left( \begin{array}{cccccc} k(k-1)\mu _{k-2} &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad -\,k &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots &{}\quad \vdots &{}\quad \vdots \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ -k &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{array} \right) , \end{aligned}$$

i.e.,

$$\begin{aligned} \mathbf {H}_2(\pmb {\mu }_2)= \left( \begin{array}{cc} 2 &{}\quad 0 \\ 0 &{}\quad 0 \end{array} \right) , \quad \mathbf {H}_3(\pmb {\mu }_3)= \left( \begin{array}{ccc} 0 &{}\quad -\,3 &{}\quad 0\\ -\,3 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \end{array} \right) , \quad \mathbf {H}_4(\pmb {\mu }_4)\!=\! \left( \begin{array}{cccc} 12\sigma ^2 &{}\quad 0 &{}\quad -\,4 &{}\quad 0\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0\\ -\,4 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{array} \right) , \end{aligned}$$

etc. Applying (22), we see that \(n(M_{k,n}-\mu _k)\) converges weakly to the distribution of \(\frac{1}{2}{\varvec{W}}'_k\mathbf {H}_k(\pmb {\mu }_k){\varvec{W}}_k =\frac{1}{2}k(k-1)\mu _{k-2} W_1^2 - k W_1 W_{k-1}\), while, by (1), the distribution of \((W_1,W_{k-1})'\) is given by (24). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afendras, G., Papadatos, N. & Piperigou, V.E. On the limiting distribution of sample central moments. Ann Inst Stat Math 72, 399–425 (2020). https://doi.org/10.1007/s10463-018-0695-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-018-0695-4

Keywords

Navigation