Skip to main content

Advertisement

Log in

Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The Serra do Brigadeiro State Park (PESB) is one of the largest fragments of Brazilian Atlantic Rainforest, and it is relevant for native species conservation. However, monocultures settled around the Park resulted in extensive open areas that facilitate the establishment of alien species on the PESB perimeter, which may threaten native species conservation therein, since biological invasion is the second main cause of global biodiversity loss. In this region, there are also farmers planting agroforestry systems (AFS), characterized by tree-based intercropping, which are structurally more similar to the Atlantic Rainforest reminiscent fragments present in the region and may limit local occurrence of potentially invasive exotic weeds for several reasons, such as the high levels of shade provided by trees, the groundcover that result from loss of tree leaves and the increased competition for belowground resources. This study aimed to test whether AFS limit exotic species establishment when compared to monoculture systems. Accordingly, three coffee monocultures and three agroforestry coffee plantations around the PESB were studied. In each of the six study areas, 30 plots of 1 m2 were established between the lines of coffee plantation, where all species present were surveyed. In both treatments, rarefaction curves were constructed to evaluate native and exotic richness, and diversity of these two categories was estimated through Simpson index inverse (1/D). All 13 sampled exotic species were present in monocultures, but only three of them occurred in AFS. Besides, alien diversity in monocultures (\(1/D\) = 2.173 ± 0.011) was significantly higher than in AFS (\(1/D\) = 1.031 ± 0.001). Such changes in alien plant community between land-use show that AFSs limit invasive species establishment. Therefore, when planted around protected areas, AFS may contribute to the control of biological invasions and to biodiversity conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161(2):105–121

    Article  Google Scholar 

  • Araújo DD, Chiodi RE, Ribeiro AP et al (2007) Análise da diversidade de espécies vegetais e sua relação com os solos de sistemas agroflorestais do Alto Jequitinhonha – MG. R Bras Agroecol 2(1):391–394

    Google Scholar 

  • Árva D, Specziár A, Erős T, Tóth M (2015) Effects of habitat types and within lake environmental gradients on the diversity of chironomid assemblages. Limnologica 53:26–34

    Article  Google Scholar 

  • Baeza A, Estades CF (2010) Effect of the landscape context on the density and persistence of a predator population in a protected area subject to environmental variability. Biol Conserv 143(1):94–101

    Article  Google Scholar 

  • Baliza DP, Cunha RL, Guimarães RJ, Barbosa JPRAD, Ávila FW, Passos AMA (2012) Physiological characteristics and development of coffee plants under different shading levels. R Bras Ci Agr 7(1):37–43

    Google Scholar 

  • Baruch Z, Bilbao B (1999) Effects of fire and defoliation on the life history of native and invader C4 grasses in a Neotropical savanna. Oecologia 119:510–520

    Article  PubMed  Google Scholar 

  • Bateman IJ, Harwood AR, Mace GM et al (2013) Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science 341(45):45–50

    Article  CAS  PubMed  Google Scholar 

  • Bisseleua HBD, Fotio D, Yede Missoup AD, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS One 8(3):e56115

    Article  CAS  PubMed  Google Scholar 

  • Caiafa AN, Silva AF (2007) Structural analysis of the vegetation on a highland granitic rock outcrop in Southeast Brazil. Rev Bras Bot 30(4):657–664

    Article  Google Scholar 

  • Cardoso VJM, Pereira FJM (2008) Germinação de sementes de Drymaria cordata (L.) Willd. ex Roem & Schult.: efeito do potencial hídrico. Braz J Bot 31:253–261

    Article  Google Scholar 

  • Cardoso IM, Guijt I, Franco FS, Carvalho AF, Ferreira-Neto PS (2001) Continual learning for agroforestry system design: University, NGO and farmer partnership in Minas Gerais. Brazil Agric Syst 69(3):235–257

    Article  Google Scholar 

  • Castro AP, Fraxe TJP, Santiago JL, Matos RB, Pinto IC (2009) Os sistemas agroflorestais como alternativa de sustentabilidade em ecossistemas de várzea no Amazonas. Acta Amaz 39(2):279–288

    Article  Google Scholar 

  • Charbonnier F, Maire G, Dreyer E et al (2013) Competition for light in heterogeneous canopies: application of MAESTRA to a coffee (Coffea arabica L.) agroforestry system. Agric Forest Meteorol 181:152–169

    Article  Google Scholar 

  • Colmanetti MAA, Shirasuna RT, Barbosa LM et al (2015) Non-arboreal vascular flora in a reforestation implanted with native seedlings. Hoehnea 42:725–735

    Article  Google Scholar 

  • da Silva L, Mueller S (2010) Avaliação de coberturas vegetais no solo sobre a incidência de plantas daninhas e na produtividade de tomate. Ágora Rev Divulg Científica 17:12–19

    Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Article  Google Scholar 

  • DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Res 86:99–114

    Article  Google Scholar 

  • de Medeiros N, Seixas DP, Batista JC et al (2017) Density-dependent regulation in a weed Bidens sulphurea (Cav.) Sch. Bip. (Asteraceae). J Environ Anal Prog 2:7–10

    Article  Google Scholar 

  • Deitenbach A, Floriani GS, Dubois JCL, Vivan JL (2008) Manual agroflorestal para a Mata Atlântica. OPUS Editora, Brasília

    Google Scholar 

  • Dobson AP, Bradshaw AD, Baker AJM (1997) Hopes for the future: restoration ecology and conservation biology. Science 277(5325):515–522

    Article  CAS  Google Scholar 

  • Estelita-Teixeira ME (1977) Propagação Vegetativa de Oxalis latifoliaKunth (Oxilidaceae). Bol Botânica 5:13–20

    Article  Google Scholar 

  • Ferrari EA (2010) Agricultura Familiar Camponesa: estratégias de reprodução socioeconômica e a contribuição da Agroecologia. Dissertation, Federal University of Viçosa

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  PubMed  Google Scholar 

  • Garcia R, Couto L (1991) Sistemas silvipastoris: Experiências no estado de Minas Gerais. In: II Encontro Brasileiro de Economia e Planejamento Florestal. Anais… Centro Nacional de Pesquisa de Floresta da Embrapa, Curitiba

  • Gasparino D, Malavasi UC, de Malavasi M, de Souza I (2006) Evaluation of seed bank under different soil uses. Rev Árvore 30:1–9

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94(4):526–532

    Article  PubMed  Google Scholar 

  • Hoffmann WA, Haridasan M (2008) The invasive grass, Melinis minutiflora, inhibits tree regeneration in a Neotropical savanna. Austral Ecol 33:29–36

    Article  Google Scholar 

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76(1):1–10

    Article  Google Scholar 

  • Klein AL, Felippe GM (1991) Efeito da luz na germinação de sementes de ervas invasoras. Pesqui Agropecuária Bras 26:955–966

    Google Scholar 

  • Magurran AE (2004) Measuring biological diversity, 2nd edn. Blackwell Science, Malden

    Google Scholar 

  • Mendes MMS, Lacerda CF, Cavalcante ACR, Fernandes FEP, Oliveira TS (2013) Desenvolvimento do milho sob influência de árvores de pau-branco em sistema agrossilvipastoril. Pesqui Agropecu Bras 48(10):1342–1350

    Article  Google Scholar 

  • Miguel AE, Carvalho CHS (2005) Efeito do nível de luz sobre o crescimento de seis cultivares de café. In: IV Simpósio de Pesquisa dos Cafés do Brasil, Londrina. Anais… Embrapa Café, Brasília

  • Molina-Montenegro MA, Atala C, Gianoli E (2010) Phenotypic plasticity and performance of Taraxacum officinale (dandelion) in habitats of contrasting environmental heterogeneity. Biol Invasions 12:2277–2284

    Article  Google Scholar 

  • Montagnini F, Jordan CF (2005) Tropical forest ecology: the basis for management and conservation. Springer, Berlin

    Google Scholar 

  • Moonen AC, Barberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127(1–2):7–21

    Article  Google Scholar 

  • Neto RMR, Gama JRV (2005) Biomassa acima do solo de espécies herbáceas e subarbustivas com potencial medicinal em uma vegetação secundária. Ciênc Florest 13:19–24

    Article  Google Scholar 

  • Parendes LA, Jones JA (2000) Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest. Oregon Conserv Biol 14:64–75

    Article  Google Scholar 

  • Pattison RR, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 17:449–459

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of South-Central Chile. Conserv Biol 18(1):238–248

    Article  Google Scholar 

  • Peneireiro FM (1999) Os sistemas agroflorestais dirigidos pela sucessão natural: Um estudo de caso. Universidade de São Paulo, Piracicaba, Brasil, Dissertação

    Google Scholar 

  • Perrings C, Williamson M, Dalmazzone S (eds) (2000) The economics of biological invasions. Edward Elgar Publishing, Cheltenham

    Google Scholar 

  • Perrings C, Williamson M, Barbier EB et al (2002) Biological invasion risks and the public good: an economic perspective. Conserv Ecol 6(1):1–7

    Article  Google Scholar 

  • Phalan B, Onial M, Balmford A, Green RE (2011) Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333(6047):1289–1291

    Article  CAS  PubMed  Google Scholar 

  • Pinto LP (2014) Status e os novos desafios das Unidades de Conservação na Amazônia e Mata Atlântica. In: Lima GS, Almeida MP, Ribeiro GA (orgs.). Manejo e Conservação de Áreas Protegidas. Laboratório de Incêndios Florestais e de Conservação da Natureza, Viçosa

  • Ramos NC, Gastauer M, Cordeiro AAC, Meira-Neto JAA (2015) Environmental filtering of agroforestry systems reduces the risk of biological invasion. Agrofor Syst 89(2):279–289

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1997) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 1(3):3–50

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142(6):1141–1153

    Article  Google Scholar 

  • Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. Ambio 29(3):167–173

    Article  Google Scholar 

  • Rogers WE, Siemann E (2002) Effects of simulated herbivory and resource availability on native and invasive exotic tree seedlings. Basic Appl Ecol 3:297–307

    Article  Google Scholar 

  • Santos MG, da Sylvestre LS (2006) Floristics and economics aspects of the pteridophytes of rocky outcrop from Rio de Janeiro State, Brazil. Acta Bot Bras 20:115–124

    Article  Google Scholar 

  • Schneider AA (2008) A flora naturalizada no estado do Rio Grande do Sul, Brasil: herbáceas subespontâneas. Biociências 15:257–268

    Google Scholar 

  • Simberloff D, Holle BV (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1(1):21–32

    Article  Google Scholar 

  • Soares MP, Saporetti-Junior AW, Meira-Neto JAA, Silva AF, Souza AL (2006) Composição florística do estrato arbóreo de Floresta Atlântica interiorana em Araponga – Minas Gerais. Rev Árvore 30(5):859–870

    Article  Google Scholar 

  • Somerfield PJ, Clarke KR, Warwick RM (2008) Simpson Index. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology, 1st edn. Elsevier, Oxford, pp 3252–3255

    Chapter  Google Scholar 

  • SOS Mata Atlântica & INPE (2014) Atlas dos remanescentes florestais da Mata Atlântica. http://mapas.sosma.org.br/. São Paulo, Centro de Documentação e Pesquisa da Fundação SOS Mata Atlântica, Brasil

  • Species List of Brazilian Flora (2016) Botanical Garden of Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Access 29 Jan 2016

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Braz J Bot 34:431–446

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq, CAPES and FAPEMIG for grants and scholarships. JAAMN has CNPq productivity fellowship. We are also grateful to all farmers that allowed us to develop our fieldwork in their properties.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anaïs de Almeida Campos Cordeiro or João Augusto Alves Meira-Neto.

Appendix

Appendix

See Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Campos Cordeiro, A., Coelho, S.D., Ramos, N.C. et al. Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas. Agroforest Syst 92, 1495–1505 (2018). https://doi.org/10.1007/s10457-017-0095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-017-0095-4

Keywords

Navigation