Skip to main content

Advertisement

Log in

Mathematical Modeling of Substrates Fluxes and Tumor Growth in the Brain

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The aim of this article is to show how a tumor can modify energy substrates fluxes in the brain to support its own growth. To address this question we use a modeling approach to explain brain nutrient kinetics. In particular we set up a system of 17 equations for oxygen, lactate, glucose concentrations and cells number in the brain. We prove the existence and uniqueness of nonnegative solutions and give bounds on the solutions. We also provide numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adijanto J, Philip N (2012) The SLC16A family of monocarboxylate transporters (MCTs)—physiology and function in cellular metabolism, ph homeostasis, and fluid transport. Curr Top Membr 70:275–312

    Article  Google Scholar 

  • Aubert A, Costalat R (2005) Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab 25:1476–1490

    Article  Google Scholar 

  • Aubert A, Costalat R, Valabrgue R (2001) Modelling of the coupling between brain electrical activity and metabolism. Acta Biotheor 49(4):301–326

    Article  Google Scholar 

  • Aubert A, Costalat R, Magistretti P, Pierre J, Pellerin L (2005) Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Ntl Acad Sci USA 102:16448–16453

    Article  Google Scholar 

  • Calvetti D, Rangel GC, Giorda LG, Somersalo E (2018) A computational model integrating brain electrophysiology and metabolism highlights the key role of extracellular potassium and oxygen. J Theor Biol 446:238–258

    Article  Google Scholar 

  • Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP (2011) Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia 13(7):620–632

    Article  Google Scholar 

  • Doherty JR, Cleveland JL (2013) Targeting lactate metabolism for cancer therapeutics. J Clin Investig 123(9):3685–3692

    Article  Google Scholar 

  • Frahm J, Krüger G, Merboldt K, Kleinschmidt A (1996) Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med 35:143–148

    Article  Google Scholar 

  • Griguer CE, Oliva CR, Gillespie GY (2005) Glucose metabolism heterogeneity in human and mouse malignant glioma cell lines. J Neuro-Oncol 74:123–133

    Article  Google Scholar 

  • Gruetter R, Ugurbil K, Seaquist ER (1998) Steady-state cerebral glucose concentrations and transport in the human brain. J Neurochem 70:397–408

    Article  Google Scholar 

  • Guillevin R, Menuel C, Vallée J-N, Franoise J-P, Capelle L, Habas C, De Marco G, Chiras J, Costalat R (2011) Mathematical modeling of energy metabolism and hemodynamics of WHO grade II gliomas using in vivo MR data. C R Biol 334:31–38

    Article  Google Scholar 

  • Guillevin R, Menuel C, Abud L, Costalat R, Capelle L, HoangXuan K, Habas C, Chiras J, Valle J-N (2012) Proton MR spectroscopy in predicting the increase of perfusion MR imaging for WHO grade II gliomas. J Magn Reson Imaging 35(3):543–550

    Article  Google Scholar 

  • Guillevin R, Herpe G, Verdier M, Guillevin C (2014) Low-grade gliomas: the challenges of imaging. Diagn Interv Imaging 95(10):957–963

    Article  Google Scholar 

  • Guillevin C, Guillevin R, Miranville A, Perrillat-Mercerot A (2018) Analysis of a mathematical model for brain lactate kinetics. Math Biosci Eng 15(5):1225–1242

    Article  Google Scholar 

  • Hertz L (2008) Bioenergetics of cerebral ischemia: a cellular perspective. Neuropharmacology 55:289–309

    Article  Google Scholar 

  • Jolivet R, Coggan JS, Allaman I, Magistretti PJ (2015) Multi-timescale modeling of activitydependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput Biol 11:e1004036

    Article  Google Scholar 

  • Mangiardi JR, Yodice P (1990) Metabolism of the malignant astrocytoma. Neurosurgery 26:1–19

    Article  Google Scholar 

  • Mendoza-Juez B, Martínez-González A, Calvo GF, Pérez-García VM (2012) A mathematical model for the glucose-lactate metabolism of in vitro cancer cells. Bull Math Biol 74:1125–1142

    Article  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Ntl Acad Sci 91:10625–10629

    Article  Google Scholar 

  • Romero-Garcia S, Moreno-Altamirano MMB, Prado-Garcia H, Snchez- Garca FJ (2016) Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7:52

    Article  Google Scholar 

  • Siesjo BK (1978) Brain energy metabolism. Pharmazie in unserer Zeit, Wiley

  • Sonveaux P, Vgran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelly MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Investig 118(12):3930–3942

    Google Scholar 

  • Tomida A, Yun J, Tsuruo T (1996) Glucoseregulated stresses induce resistance to camptothecin in human cancer cells. Int J Cancer 68(3):391–396

    Article  Google Scholar 

  • Vafaee MS, Gjedde A (2000) Model of blood-brain transfer of oxygen explains nonlinear flow-metabolism coupling during stimulation of visual cortex. J Cereb Blood Flow Metab 20:747–754

    Article  Google Scholar 

  • Valabrégue R, Aubert A, Burger J, Bittoun J, Costalat R (2003) Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J Cereb Blood Flow Metab 23:536–545

    Article  Google Scholar 

  • Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ (2016) The regulation and function of lactate dehydrogenase a: therapeutic potential in brain tumor. Brain Pathol 26(1):3–17

    Article  Google Scholar 

  • Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin Radiat Oncol 14(3):267–274

    Article  Google Scholar 

  • Yaromina A, Quennet V, Zips D, Meyer S, Shakirin G, Walenta S, Mueller-Klieser W, Baumann M (2009) Co-localisation of hypoxia and perfusion markers with parameters of glucose metabolism in human squamous cell carcinoma (hSCC) xenografts. Int J Radiat Biol 85(11):972–980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Miranville.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Parameters Value for the Simulations

Appendix: Parameters Value for the Simulations

Initial values chosen for this simulation are given in Aubert et al. works. We refer the interested reader to Aubert and Costalat (2005) to get an explanation of these relevant values.

We give in following Tables 4, 5, 6 and 7 the main parameter values. The function F is a positive square wave function with a maximum value of \(0.048\hbox { s}^{-1}\) (during \(10\hbox { s}\)) and a minimum value of \(0.036\hbox { s}^{-1}\) (during \(100\hbox { s}\)). It reports the cerebral blood flow (Aubert et al. 2001; Aubert and Costalat 2005; Jolivet et al. 2015; Guillevin et al. 2018). It can be taken as follows:

$$\begin{aligned} F \left\{ \begin{array}{rl} {\mathbb {R}}^+&{}\longrightarrow {\mathbb {R}}^+\\ t&{}\longmapsto \left\{ \begin{array}{rl} F_0(1+\alpha _f) &{}\text { if }\exists N \in {\mathbb {N}}^* / (N-1)t_f+t_i<t<Nt_f, \\ F_0 &{}\text { if not.} \end{array} \right. \end{array} \right. \end{aligned}$$

with parameters from Table 4.

Table 4 Parameters for F
Table 5 Oxygen parameters

Oxygen parameter values are based on Valabrégue et al. (2003) and Aubert and Costalat (2005) works. The quadratic adjustement we have done is explained in the main text.

Table 6 Glucose parameters

Glucose parameter values are taken up from Jolivet et al. (2015) and Aubert and Costalat (2005) models. Chosen values are supported by the related literature (Gruetter et al. 1998).

Table 7 Lactate parameters

Lactate parameter values are also taken up from Jolivet et al. (2015) and Aubert and Costalat (2005) models. To the best of our knowledge there has been no measure of the lactate maximal transport rate between astrocyte and neuron yet. Therefore its value has been chosen arbitrarily here.

Moreover every tumor shows up a different mechanism concerning substrate use (Romero-Garcia et al. 2016). Gliomas are ad initio formed by degenarated astrocytic cells. Therefore we arbitrarily chose here to keep the same maximal transport rate for both astrocytes and tumor cells. We have:

$$\begin{aligned} \mu _{c,g}&=\mu _{c,a}=0.104 \text { s}^{-1},&\rho _{e,g}&=\rho _{e,a}=0.147 \text { mmoL}\times \text {L}^{-1}\times \text {s}^{-1},\\ \kappa _{g,n}&=\kappa _{a,n}= 0.5 \text { mmoL}\times \text {L}^{-1}\times \text {s}^{-1},&\kappa _{g,e}&=\kappa _{a,e}= 106.1 \text { mmoL} \times \text {L}^{-1}\times \text {s}^{-1},\\ \kappa _{g,c}&=\kappa _{a,c}= 0.00243 \text { mmoL}\times \text {L}^{-1}\times \text {s}^{-1}. \end{aligned}$$

Knowing that glioma cells are more efficient to take up substrates we arbitrarily chose for this simulation tumor Michaelis–Mentens constant times higher than astrocytic Michaelis–Mentens constant.

$$\begin{aligned} p_g = 3 \times p_a = 9 \text {mmoL}\times \text {L}^{-1},\quad k_g = 3 \times k_a = 7.5 \text {mmoL}\times \text {L}^{-1}. \end{aligned}$$

Finally, glucose, lactate and oxygen consumption rate of each compartment are arbitrarily chosen keeping in mind that astrocytes show higher abilities to take glucose and convert it into lactate than neurons. Contrariwise, neurons have better abilities to take lactate and convert it into energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrillat-Mercerot, A., Bourmeyster, N., Guillevin, C. et al. Mathematical Modeling of Substrates Fluxes and Tumor Growth in the Brain. Acta Biotheor 67, 149–175 (2019). https://doi.org/10.1007/s10441-019-09343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-019-09343-1

Keywords

Mathematics Subject Classification

Navigation