Skip to main content
Log in

Harnessing Macrophages for Vascularization in Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this review, we explore the roles of macrophages both in vessel development and in vascularization of tissue engineered constructs. Upon the implantation of tissue engineered constructs into the body, macrophages respond, invade and orchestrate the host’s immune response. By altering their phenotype, macrophages can adopt a variety of roles. They can promote inflammation at the site of the implanted construct; they can also promote tissue repair. Macrophages support tissue repair by promoting angiogenesis through the secretion of pro-angiogenic cytokines and by behaving as support cells for nascent vasculature. Thus, the ability to manipulate the macrophage phenotype may yield macrophages capable of supporting vessel development. Moreover, macrophages are an easily isolated autologous cell source. For the generation of vascularized constructs outside of the body, these isolated macrophages can also be skewed to adopt a pro-angiogenic phenotype and enhance blood vessel development in the presence of endothelial cells. To assess the influence of macrophages on vessel development, both in vivo and in vitro models have been developed. Additionally, several groups have demonstrated the pro-angiogenic roles of macrophages in vascularization of tissue engineered constructs through the manipulation of macrophage phenotypes. This review comments on the roles of macrophages in promoting vascularization within these contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Reprint permission from: Moore et al. Ref. 39.

Figure 4

Reprint permission from: Ogle et al.29

Figure 5

Adapted from: Hsu et al.25

Similar content being viewed by others

References

  1. Alvarez, M. M., J. C. Liu, G. Trujillo-de Santiago, et al. Delivery strategies to control inflammatory response: modulating M1-M2 polarization in tissue engineering applications. J. Control Release. 1:1–10, 2015. https://doi.org/10.1016/j.jconrel.2016.01.026.

    Article  CAS  Google Scholar 

  2. Ambati, B. K., M. Nozaki, N. Singh, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997, 2006. https://doi.org/10.1038/nature05249.Corneal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Armulik, A., A. Abramsson, and C. Betsholtz. Endothelial/pericyte interactions. Circ. Res. 97(6):512–523, 2005. https://doi.org/10.1161/01.RES.0000182903.16652.d7.

    Article  CAS  PubMed  Google Scholar 

  4. Arras, M., W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101(1):40–50, 1998. https://doi.org/10.1172/JCI119877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Awojoodu, A. O., M. E. Ogle, L. S. Sefcik, et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl. Acad. Sci. USA 110(34):13785–13790, 2013. https://doi.org/10.1073/pnas.1221309110.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barnett, F. H., M. Rosenfeld, M. Wood, et al. Macrophages form functional vascular mimicry channels in vivo. Sci. Rep. 6:36659, 2016. https://doi.org/10.1038/srep36659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33(15):3792–3802, 2012. https://doi.org/10.1016/j.biomaterials.2012.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao, R., E. Brakenhielm, R. Pawliuk, et al. Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat. Med. 9(5):548–553, 2003.

    Article  Google Scholar 

  9. Daley, J. M., S. K. Brancato, A. A. Thomay, J. S. Reichner, and J. E. Albina. The phenotype of murine wound macrophages. J. Leukoc. Biol. 87(1):59–67, 2010. https://doi.org/10.1189/jlb.0409236.

    Article  CAS  PubMed  Google Scholar 

  10. Das, A., M. Sinha, S. Datta, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am. J. Pathol. 185(10):2596–2606, 2015. https://doi.org/10.1016/j.ajpath.2015.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeFalco, T., I. Bhattacharya, A. V. Williams, D. M. Sams, and B. Capel. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc. Natl. Acad. Sci. 111(23):E2384–E2393, 2014. https://doi.org/10.1073/pnas.1400057111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DiPietro, L. A. Wound healing: the role of the macrophage and other immune cells. Shock. 4(4):233–240, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Dondossola, E., B. M. Holzapfel, S. Alexander, S. Filippini, D. W. Hutmacher, and P. Friedl. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 1(1):1–20, 2017. https://doi.org/10.1038/s41551-016-0007.

    Article  Google Scholar 

  14. Du, R., K. V. Lu, C. Petritsch, et al. HIF1α induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13(3):206–220, 2008. https://doi.org/10.1016/j.ccr.2008.01.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fantin, A., J. M. Vieira, G. Gestri, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116(5):829–840, 2010. https://doi.org/10.1182/blood-2009-12-257832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fournier, G. A., G. A. Lutty, S. Watt, A. Fenselau, and A. Patz. A corneal micropocket assay for angiogenesis in the rat eye. Investig. Ophthalmol. Vis. Sci. 21(2):351–354, 1981.

    CAS  Google Scholar 

  17. Garash, R., A. Bajpai, B. M. Marcinkiewicz, and K. L. Spiller. Drug delivery strategies to control macrophages for tissue repair and regeneration. Exp. Biol. Med. 2016. https://doi.org/10.1177/1535370216649444.

    Article  Google Scholar 

  18. Geissmann, F., S. Jung, and D. R. Littman. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82, 2003. https://doi.org/10.1016/S1074-7613(03)00174-2.

    Article  CAS  PubMed  Google Scholar 

  19. Gerri, C., R. Marín-Juez, M. Marass, A. Marks, H.-M. Maischein, and D. Y. R. Stainier. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat. Commun. 8(May):15492, 2017. https://doi.org/10.1038/ncomms15492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon, S., and P. R. Taylor. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5(12):953–964, 2005. https://doi.org/10.1038/nri1733.

    Article  CAS  PubMed  Google Scholar 

  21. Griffith, L. G., and G. Naughton. Tissue engineering–current challenges and expanding opportunities. Science 295(5557):1009–1014, 2002. https://doi.org/10.1126/science.1069210.

    Article  CAS  PubMed  Google Scholar 

  22. Hasan, A., A. Paul, N. E. Vrana, et al. Microfluidic techniques for development of 3D vacularized tissue. Biomaterials 35(1):7308–7325, 2014. https://doi.org/10.1088/1367-2630/15/1/015008.Fluid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hibino, N., T. Yi, D. R. Duncan, et al. A critical role for macrophages in neovessel formation and the development of stenosis in tissue-engineered vascular grafts. Faseb J. 25(12):4253–4263, 2011. https://doi.org/10.1096/fj.11-186585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsieh, J., T. Smith, V. Meli, T. Tran, E. Botvinick, and W. F. Liu. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 47:14–24, 2016. https://doi.org/10.1016/j.cyto.2014.10.031.Interleukin-10.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hsu, C. W., R. A. Poché, J. E. Saik, et al. Improved angiogenesis in response to localized delivery of macrophage-recruiting molecules. PLoS ONE 10(7):1–27, 2015. https://doi.org/10.1371/journal.pone.0131643.

    Article  CAS  Google Scholar 

  26. Jetten, N., S. Verbruggen, M. J. Gijbels, M. J. Post, M. P. J. De Winther, and M. M. P. C. Donners. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 17(1):109–118, 2014. https://doi.org/10.1007/s10456-013-9381-6.

    Article  CAS  PubMed  Google Scholar 

  27. Kappel, D. F. Organ donation in the United States—2014. J. Leg. Med. 36(1):7–16, 2015. https://doi.org/10.1080/01947648.2015.1047299.

    Article  PubMed  Google Scholar 

  28. Koh, T. J., and L. A. DiPietro. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13:e23, 2011. https://doi.org/10.1017/S1462399411001943.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Krieger, J. R., M. E. Ogle, J. McFaline-Figueroa, C. E. Segar, J. S. Temenoff, and E. A. Botchwey. Spatially localized recruitment of anti-inflammatory monocytes by SDF-1α-releasing hydrogels enhances microvascular network remodeling. Biomaterials 77:280–290, 2016. https://doi.org/10.1016/j.biomaterials.2015.10.045.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, A. H. S., K. Martin, E. C. Turner, et al. Role of CX3CR1 receptor in monocyte/macrophage driven neovascularization. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0057230.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee, K. Y. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012. https://doi.org/10.1016/j.progpolymsci.2011.06.003.Alginate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leibovich, S. J., P. J. Polverini, H. M. Shepard, D. M. Wiseman, V. Shively, and N. Nuseir. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-alpha. Nature 329(6140):630–632, 1987. https://doi.org/10.1038/329630a0.

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229(2):176–185, 2013. https://doi.org/10.1002/path.4133.

    Article  CAS  PubMed  Google Scholar 

  34. Mantovani, A., S. Sozzani, M. Locati, P. Allavena, and A. Sica. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M 2 mononuclear phagocytes. Trends Immunol. 23(11):549–555, 2002.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez, F. O., and S. Gordon. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6:13, 2014. https://doi.org/10.12703/p6-13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moldovan, N. I., P. J. Goldschmidt-Clermont, J. Parker-Thornburg, S. D. Shapiro, and P. E. Kolattukudy. Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circ. Res. 87(5):378–384, 2000. https://doi.org/10.1161/01.RES.87.5.378.

    Article  CAS  PubMed  Google Scholar 

  37. Moon, J. J., and J. L. West. Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top. Med. Chem. 8(4):300–310, 2008. https://doi.org/10.2174/156802608783790983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore, E. M., V. Suresh, G. Ying, and J. L. West. M0 and M2 macrophages enhance vascularization of tissue engineering scaffolds. Regen. Eng. Transl. Med. 2018. https://doi.org/10.1007/s40883-018-0048-0.

    Article  Google Scholar 

  39. Moore, E. M., G. Ying, and J. L. West. Macrophages influence vessel formation in 3D bioactive hydrogels. Adv. Biosyst. 2017. https://doi.org/10.1002/adbi.201600021.

    Article  Google Scholar 

  40. Murray, P. J., J. E. Allen, S. K. Biswas, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20, 2014. https://doi.org/10.1016/j.immuni.2014.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nathan, C. F. Secretory products of macrophage. J. Clin. Invest. 79(February):319–326, 1987. https://doi.org/10.1172/JCI112815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nomi, M., A. Atala, P. De Coppi, and S. Soker. Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23(6):463–483, 2002. https://doi.org/10.1016/S0098-2997(02)00008-0.

    Article  CAS  PubMed  Google Scholar 

  43. Novak, M. L., and T. J. Koh. Phenotypic transitions of macrophages orchestrate tissue repair. Am. J. Pathol. 183(5):1352–1363, 2013. https://doi.org/10.1016/j.ajpath.2013.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nsiah, B. A., E. M. Moore, L. C. Roudsari, N. K. Virdone, and J. L. West. Angiogenesis in Hydrogel Biomaterials. Durham: Duke University, 2015. https://doi.org/10.1016/b978-1-78242-105-4.00008-0.

    Book  Google Scholar 

  45. Nucera, S., D. Biziato, and M. de Palma. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int. J. Dev. Biol. 55(4–5):495–503, 2011. https://doi.org/10.1387/ijdb.103227sn.

    Article  CAS  PubMed  Google Scholar 

  46. Okuno, Y., A. Nakamura-Ishizu, K. Kishi, T. Suda, and Y. Kubota. Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood 117(19):5264–5272, 2011. https://doi.org/10.1182/blood-2011-01-330720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Peters, E. B., N. Christoforou, E. Moore, J. L. West, and G. A. Truskey. CD45 + cells present within mesenchymal stem cell populations affect network formation of blood-derived endothelial outgrowth cells. Biores. Open Access. 4:75–88, 2015. https://doi.org/10.1089/biores.2014.0029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Phelps, E. A., N. Landazuri, P. M. Thule, W. R. Taylor, and A. J. Garcia. Bioartificial matrices for therapeutic vascularization. Proc. Natl. Acad. Sci. 107(8):3323–3328, 2010. https://doi.org/10.1073/pnas.0905447107.

    Article  PubMed  Google Scholar 

  49. Poché, R. A., J. E. Saik, J. L. West, and M. E. Dickinson. The mouse cornea as a transplantation site for live imaging of engineered tissue constructs. Cold Spring Harb. Protoc. 5(4):1–11, 2010. https://doi.org/10.1101/pdb.prot5416.

    Article  Google Scholar 

  50. Polverini, P. J., P. S. Cotran, M. A. Gimbrone, and E. R. Unanue. Activated macrophages induce vascular proliferation. Nature 269(5631):804–806, 1977. https://doi.org/10.1038/269804a0.

    Article  CAS  PubMed  Google Scholar 

  51. Przaeres, P., V. Almeida, L. Lousado, et al. Macrophages generate pericytes in the developing brain macrophages generate pericytes in the developing brain. Cell Mol. Neurobiol. 1:1–10, 2017. https://doi.org/10.1007/s10571-017-0549-2.

    Article  CAS  Google Scholar 

  52. Rehman, J., J. Li, C. M. Orschell, and K. L. March. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107(8):1164–1169, 2003. https://doi.org/10.1161/01.CIR.0000058702.69484.A0.

    Article  PubMed  Google Scholar 

  53. Richardson, T. P., M. C. Peters, A. B. Ennett, and D. J. Mooney. Access polymeric system for dual growth factor delivery. Nat. Biotechnol. 19:1029–1034, 2001.

    Article  CAS  PubMed  Google Scholar 

  54. Rohde, E., C. Malischnik, D. Thaler, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells. 24(2):357–367, 2006. https://doi.org/10.1634/stemcells.2005-0072.

    Article  PubMed  Google Scholar 

  55. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26(8):434–441, 2008. https://doi.org/10.1016/j.tibtech.2008.04.009.

    Article  CAS  PubMed  Google Scholar 

  56. Rymo, S. F., H. Gerhardt, F. W. Sand, R. Lang, A. Uv, and C. Betsholtz. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0015846.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sidky, Y. A., and E. C. Borden. Inhibition of angiogenesis by interferons: effects on tumor-and lymphocyte-induced vascular responses. Cancer Res. 47(19):5155–5161, 1987.

    CAS  PubMed  Google Scholar 

  58. Spiller, K. L., R. R. Anfang, K. J. Spiller, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials 35(15):4477–4488, 2014. https://doi.org/10.1016/j.biomaterials.2014.02.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Spiller, K. L., S. Nassiri, C. E. Witherel, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207, 2015. https://doi.org/10.1016/j.biomaterials.2014.10.017.

    Article  CAS  PubMed  Google Scholar 

  60. Sunderkötter, C., M. Goebeler, K. Schulze-Osthoff, R. Bhardwaj, and C. Sorg. Macrophage-derived angiogenesis factors. Pharmacol. Ther. 51(2):195–216, 1991. https://doi.org/10.1016/0163-7258(91)90077-Y.

    Article  PubMed  Google Scholar 

  61. Takemura, R., and Z. Werb. Secretory products of macrophages and their physiological functions. Am. J. Physiol. 246(1 Pt 1):C1–C9, 1984.

    Article  CAS  PubMed  Google Scholar 

  62. Tang, N., L. Wang, J. Esko, et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6(5):485–495, 2004. https://doi.org/10.1016/j.ccr.2004.09.026.

    Article  CAS  PubMed  Google Scholar 

  63. Tattersall, I. W., J. Du, Z. Cong, et al. In vitro modeling of endothelial interaction with macrophages and pericytes demonstrates Notch signaling function in the vascular microenvironment. Angiogenesis 19(2):201–215, 2016. https://doi.org/10.1007/s10456-016-9501-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Von Tell, D., A. Armulik, and C. Betsholtz. Pericytes and vascular stability. Exp. Cell Res. 312(5):623–629, 2006. https://doi.org/10.1016/j.yexcr.2005.10.019.

    Article  CAS  Google Scholar 

  65. Wynn, T. A. A., and K. M. M. Vannella. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462, 2016. https://doi.org/10.1016/j.immuni.2016.02.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamamoto, S., M. Muramatsu, E. Azuma, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci. Rep. 1:1–16, 2017. https://doi.org/10.1038/s41598-017-03994-1.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Chih-Wei Hsu for the use of his image (Fig. 5). The authors would also like to thank Dr. Botchwey for the use of Fig. 4: Reprinted from Ref. 29. Figure 3, Reprinted from Ref. 39. Funding was provided by National Science Foundation (Grant No. DGE-1644868), Foundation for the National Institutes of Health (Grant No. R01 HL097520).

Conflict of interest

The authors declare no conflicts of interest with regards to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. West.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, E.M., West, J.L. Harnessing Macrophages for Vascularization in Tissue Engineering. Ann Biomed Eng 47, 354–365 (2019). https://doi.org/10.1007/s10439-018-02170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02170-4

Keywords

Navigation