Skip to main content
Log in

Size and strain rate effects in tensile strength of penta-twinned Ag nanowires

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Penta-twinned Ag nanowires (pt-AgNWs) have recently attracted much attention due to their interesting mechanical and physical properties. Here we perform large-scale atomistic simulations to investigate the influence of sample size and strain rate on the tensile strength of pt-AgNWs. The simulation results show an apparent size effect in that the nanowire strength (defined as the critical stress for dislocation nucleation) increases with decreasing wire diameter. To account for such size effect, a theoretical model involving the interaction between an emerging dislocation and the twin boundary has been developed for the surface nucleation of dislocations. It is shown that the model predictions are in quantitative agreement with the results from atomistic simulations and previous experimental studies in the literatures. The simulations also reveal that nanowire strength is strain-rate dependent, which predicts an activation volume for dislocation nucleation in the range of 1–10\(b^{3}\), where b is the magnitude of the Burgers vector for a full dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia, Y., Yang, P., Sun, Y., et al.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  2. Lieber, C.M., Wang, Z.: Functional nanowires. MRS Bull. 32, 99–108 (2007)

    Article  Google Scholar 

  3. Sun, Y., Gates, B., Mayers, B., et al.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002)

    Article  Google Scholar 

  4. Sun, Y., Yin, Y., Mayers, B.T., et al.: Uniform silver nanowires synthesis by reducing AgNO\(_{3}\) with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002)

    Article  Google Scholar 

  5. Zhu, Y., Qin, Q., Xu, F., et al.: Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments. Phys. Rev. B 85, 045443 (2012)

    Article  Google Scholar 

  6. Filleter, T., Ryu, S., Kang, K., et al.: Nucleation-controlled distributed plasticity in penta-twinned silver nanowires. Small 8, 2986–2993 (2012)

    Article  Google Scholar 

  7. Narayanan, S., Cheng, G., Zeng, Z., et al.: Strain hardening and size effect in fivefold twinned Ag nanowires. Nano Lett. 15, 4037–4044 (2015)

    Article  Google Scholar 

  8. Qin, Q., Yin, S., Cheng, G., et al.: Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 6, 5983 (2015)

    Article  Google Scholar 

  9. Cao, A., Wei, Y.: Atomistic simulations of the mechanical behavior of fivefold twinned nanowires. Phys. Rev. B 74, 214108 (2006)

    Article  Google Scholar 

  10. Wu, J., Nagao, S., He, J., et al.: Role of fivefold twin boundary on the enhanced mechanical properties of fcc Fe nanowires. Nano Lett. 11, 5264–5273 (2011)

    Article  Google Scholar 

  11. Yoo, J.H., Oh, S.I., Jeong, M.S.: The enhanced elastic modulus of nanowires associated with multitwins. J. Appl. Phys. 107, 094316 (2010)

    Article  Google Scholar 

  12. Niekiel, F., Spiecker, E., Bitzek, E.: Influence of anisotropic elasticity on the mechanical properties of fivefold twinned nanowires. J. Mech. Phys. Solids 84, 358–379 (2015)

    Article  Google Scholar 

  13. Zhang, S., Wang, Y.: Molecular dynamics simulation of tension-compression asymmetry in plasticity of fivefold twinned Ag nanopillars. Phys. Lett. A 379, 603–606 (2015)

    Article  Google Scholar 

  14. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  MATH  Google Scholar 

  15. Parrinello, M., Rahman, A.: Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182 (1981)

    Article  Google Scholar 

  16. Nose, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  17. Williams, P.L., Mishin, Y., Hamilton, J.C.: An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14, 817 (2006)

    Article  Google Scholar 

  18. Tsai, D.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979)

    Article  Google Scholar 

  19. Faken, D., Jónsson, H.: Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–282 (1994)

    Article  Google Scholar 

  20. Li, D., Wang, F., Yang, Z., et al.: How to identify dislocations in molecular dynamics simulations? Sci. China Phys. Mech. Astron. 57, 2177–2187 (2014)

    Article  Google Scholar 

  21. Chang, T., Cheng, G., Li, C., et al.: On the size-dependent elasticity of penta-twinned silver nanowires. Extreme Mech. Lett. 8, 177–183 (2016)

    Article  Google Scholar 

  22. Jing, G., Duan, H., Sun, X., et al.: Surface effects on elastic properties of silver nanowires: contact atomic-force microscopy. Phys. Rev. B 73, 235409 (2006)

    Article  Google Scholar 

  23. McDowell, M.T., Leach, A.M., Gall, K.: On the elastic modulus of metallic nanowires. Nano Lett. 8, 3613–3618 (2008)

    Article  Google Scholar 

  24. Chen, Z., Jin, Z., Gao, H.: Repulsive force between screw dislocation and coherent twin boundary in aluminum and copper. Phys. Rev. B 75, 212104 (2007)

    Article  Google Scholar 

  25. Deng, C., Sansoz, F.: Repulsive force of twin boundary on curved dislocations and its role on the yielding of twinned nanowires. Scr. Mater. 63, 50–53 (2010)

    Article  Google Scholar 

  26. Gao, H., Rice, J.R.: Application of 3D weight functions II: the stress field and energy of a shear dislocation loop at a crack tip. J. Mech. Phys. Solids 37, 155–174 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Asaro, R.J., Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53, 3369–3382 (2005)

    Article  Google Scholar 

  28. Zhang, Y., Wang, T., Chen, X.: Effect of surface stress on the asymmetric yield strength of nanowires. J. Appl. Phys. 103, 123527 (2008)

    Article  Google Scholar 

  29. Yang, Z., Lu, Z., Zhao, Y.: Atomistic simulation on size-dependent yield strength and defects evolution of metal nanowires. Comput. Mater. Sci. 46, 142–150 (2009)

    Article  Google Scholar 

  30. Wei, Y.: Anisotropic size effect in strength in coherent nanowires with tilted twins. Phys. Rev. B 84, 014107 (2011)

    Article  Google Scholar 

  31. Zhu, T., Li, J., Samanta, A., et al.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008)

    Article  Google Scholar 

  32. Zhou, Q., Xie, J.Y., Wang, F.: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta Mech. Sin. 31, 319–337 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11372152 and 51420105001) and the National Natural Science Foundation of United States (Grant CMMI-1161749). The simulations were performed on the TianHe-1 supercomputer at the National Supercomputer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Li or Huajian Gao.

Appendix

Appendix

Here we calculate the normal distance x from point C to twin plane ABD in Fig. 6. Triangle DBC is one fifth the size of a regular pentagon on the [110] plane. Triangles ABD and ACD are on two twin planes, while triangle ABC is a dislocation slip plane. As illustrated in Fig. 6, we can calculate the area of triangle ABC in two ways:

$$\begin{aligned} \frac{R^{2}\sin \frac{\theta }{2}\cos \frac{\theta }{2}}{\cos \beta }=\frac{x}{2}\sqrt{R^{2}+h^{2}}. \end{aligned}$$
(A1)

Note the following expression,

$$\begin{aligned} \tan \beta =\frac{h}{R\cos \frac{\theta }{2}}. \end{aligned}$$
(A2)

Combining Eqs. (A1) and (A2), we obtain \(2x=\eta D\), where \(\eta \) is expressed as

$$\begin{aligned} \eta =\frac{\sin \theta }{\cos \beta \sqrt{1+\left( {\cos \frac{\theta }{2}\tan \beta } \right) ^{2}}}. \end{aligned}$$
(A3)

Give that \(\theta =72.0{^{\circ }}\) and \(\beta =35.2{^{\circ }}\), then \(\eta =1.01\).

Fig. 6
figure 6

Geometrical illustration for twin planes and dislocation slip planes in a regular pentagonal column

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, X. & Gao, H. Size and strain rate effects in tensile strength of penta-twinned Ag nanowires. Acta Mech. Sin. 33, 792–800 (2017). https://doi.org/10.1007/s10409-017-0675-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0675-6

Keywords

Navigation