Skip to main content
Log in

Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We present a novel methodology and strategy to predict pressures and flow rates in the global cardiovascular network in different postures varying from supine to upright. A closed-loop, multiscale mathematical model of the entire cardiovascular system (CVS) is developed through an integration of one-dimensional (1D) modeling of the large systemic arteries and veins, and zero-dimensional (0D) lumped-parameter modeling of the heart, the cardiac-pulmonary circulation, the cardiac and venous valves, as well as the microcirculation. A versatile junction model is proposed and incorporated into the 1D model to cope with splitting and/or merging flows across a multibranched junction, which is validated to be capable of estimating both subcritical and supercritical flows while ensuring the mass conservation and total pressure continuity. To model gravitational effects on global hemodynamics during postural change, a robust venous valve model is further established for the 1D venous flows and distributed throughout the entire venous network with consideration of its anatomically realistic numbers and locations. The present integrated model is proven to enable reasonable prediction of pressure and flow rate waveforms associated with cardiopulmonary circulation, systemic circulation in arteries and veins, as well as microcirculation within normal physiological ranges, particularly in mean venous pressures, which well match the in vivo measurements. Applications of the cardiovascular model at different postures demonstrate that gravity exerts remarkable influence on arterial and venous pressures, venous returns and cardiac outputs whereas venous pressures below the heart level show a specific correlation between central venous and hydrostatic pressures in right atrium and veins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. B1 1
Fig. B1 2
Fig. B1 3
Fig. B1 4
Fig. B1 5
Fig. B1 6
Fig. B1 7
Fig. B1 8
Fig. B1 9
Fig. B1 10
Fig. B1 11
Fig. B1 12
Fig. B1 13
Fig. B1 14
Fig. B1 15
Fig. B1 16

Similar content being viewed by others

References

  1. MacWilliam, J.A.: Postural effects on heart-rate and blood-pressure. Q. J. Exp. Physiol. 23, 1–33 (1933)

    Article  Google Scholar 

  2. Martin-Du Pan, R.C., Benoit, R., Girardier, L.: The role of body position and gravity in the symptoms and treatment of various medical diseases. Swiss Med. Wkly. 134, 543–551 (2004)

  3. Gisolf, J.: Postural changes in humans: effects of gravity on the circulation. [Ph.D. Thesis], University of Amsterdam, the Netherlands (2005)

  4. Wright, H.P., Osborn, S.B.: Effect of posture on venous velocity, measured with 24NaCl. Br. Heart J. 14, 325–330 (1952)

    Article  Google Scholar 

  5. Nicolaides, A.N.: Investigation of chronic venous insufficiency a consensus statement. Circulation 102, e126–e163 (2000)

    Article  Google Scholar 

  6. Atta, H.M.: Varicose veins: role of mechanotransduction of venous hypertension. Int. J. Vasc. Med. 2012, 538627 (2012). doi:10.1155/2012/538627

    Google Scholar 

  7. Blomqvist, C.G., Stone, H.L.: Cardiovascular adjustments to gravitational stress. Compr. Physiol. 1025–1063 (2011). doi:10.1002/cphy.cp020328

  8. Gisolf, J., Gisolf, A., Van Lieshout, J.J., et al.: The siphon controversy: an integration of concepts and the brain as baffle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R627–R629 (2005)

    Article  Google Scholar 

  9. Dawson, E.A., Secher, N.H., Dalsgaard, M.K., et al.: Standing up to the challenge of standing: a siphon does not support cerebral blood flow in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R911–R914 (2004)

    Article  Google Scholar 

  10. Olesen, N.D., van Lieshout, J.J., Fisher, J.P., et al.: Case report: (Pre)syncopal symptoms associated with a negative internal jugular venous pressure. Front. Physiol. 5, 317 (2014)

    Article  Google Scholar 

  11. Liu, H., Liang, F.Y., Wong, J., et al.: Multi-scale modeling of hemodynamics in the cardiovascular system. Acta Mech. Sin. 31, 446–464 (2015). doi:10.1007/s10409-015-0460-3

    Article  MathSciNet  MATH  Google Scholar 

  12. van de Vosse, F.N., Stergiopulos, N.: Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467–499 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Taylor, C.A., Figueroa, C.A.: Patient-specific modeling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  14. Mynard, J.P., Smolich, J.J.: One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation. Ann. Biomed. Eng. 43, 1443–1460 (2015)

    Article  Google Scholar 

  15. Liang, F.Y., Takagi, S., Himeno, R., et al.: Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study. J. Biomech. 42, 692–704 (2009)

  16. Avolio, A.P.: Multi-branched model of the human arterial system. Med. Biol. Eng. Comput. 18, 709–718 (1980)

    Article  Google Scholar 

  17. Zhang, X., Noda, S., Himeno, R., et al.: Cardiovascular disease-induced thermal responses during passive heat stress: an integrated computational study. Int. J. Numer. Method Biomed. Eng. 32, e02768 (2016). doi:10.1002/cnm.2768

  18. Westerhof, N., Lankhaar, J.W., Westerhof, B.E.: The arterial windkessel. Med. Biol. Eng. Comput. 47, 131–141 (2009)

    Article  Google Scholar 

  19. De Pater, L., Van den Berg, J.W.: An electrical analogue of the entire human circulatory system. Med. Electron. Biol. Eng. 2, 161–166 (1964)

    Article  Google Scholar 

  20. Snyder, M.F., Rideout, V.C.: Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. 4, 325–334 (1969)

    Article  Google Scholar 

  21. Sun, Y., Beshara, M., Lucariello, R.J., et al.: A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am. J. Physiol. Heart Circ. Physiol. 272, H1499–H1515 (1997)

    Google Scholar 

  22. Heldt, T., Shim, E.B., Kamm, R.D., et al.: Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92, 1239–1254 (2002)

    Article  Google Scholar 

  23. Olufsen, M.S., Peskin, C.S., Kim, W.Y., et al.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28, 1281–1299 (2000)

    Article  Google Scholar 

  24. Sherwin, S.J., Franke, V., Peiró, J., et al.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Formaggia, L., Lamponi, D., Tuveri, M., et al.: Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9, 273–288 (2006)

    Article  Google Scholar 

  26. Montecinos, G.I., Müller, L.O., Toro, E.F.: Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes. J. Comput. Phys. 266, 101–123 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ho, H., Mithraratne, K., Hunter, P.: Numerical simulation of blood flow in an anatomically-accurate cerebral venous tree. IEEE Trans. Med. Imaging 32, 85–91 (2013)

    Article  Google Scholar 

  28. Shapiro, A.H.: Steady flow in collapsible tubes. J. Biomech. Eng. 99, 126–147 (1977)

    Article  Google Scholar 

  29. Morgan, P., Parker, K.H.: A mathematical model of flow through a collapsible tube–I. Model and steady flow results. J. Biomech. 22, 1263–1270 (1989)

    Article  Google Scholar 

  30. Pedley, T.J., Luo, X.Y.: Modelling flow and oscillations in collapsible tubes. Theor. Comput. Fluid Dyn. 10, 277–294 (1998)

    Article  MATH  Google Scholar 

  31. Bassez, S., Flaud, P., Chauveau, M.: Modeling of the deformation of flexible tubes using a single law: application to veins of the lower limb in man. J. Biomech. Eng. 123, 58–65 (2011)

    Article  Google Scholar 

  32. Marchandise, E., Flaud, P.: Accurate modelling of unsteady flows in collapsible tubes. Comput. Methods Biomech. Biomed. Eng. 13, 279–290 (2010)

    Article  Google Scholar 

  33. Fullana, J., Zaleski, S.: A branched one-dimensional model of vessel networks. J. Fluid. Mech. 621, 183–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Müller, L.O., Toro, E.F.: A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. Method Biomed. Eng. 30, 681–725 (2014)

    Article  MathSciNet  Google Scholar 

  35. Olufsen, M.S., Ottesen, J.T., Tran, H.T., et al.: Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99, 1523–1537 (2005)

    Article  Google Scholar 

  36. van Heusden, K., Gisolf, J., Stok, W.J., et al.: Mathematical modeling of gravitational effects on the circulation: importance of the time course of venous pooling and blood volume changes in the lungs. Am. J. Physiol. Heart Circ. Physiol. 291, H2152–H2165 (2006)

    Article  Google Scholar 

  37. Lim, E., Chan, G.S., Dokos, S., et al.: A cardiovascular mathematical model of graded head-up tilt. PLoS ONE 8, e77357 (2013)

    Article  Google Scholar 

  38. Stergiopulos, N., Young, D.F., Rogge, T.R.: Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25, 1477–1488 (1992)

    Article  Google Scholar 

  39. Wild, R., Pedley, T.J., Riley, D.S.: Viscous flow in collapsible tubes of slowly varying elliptical cross-section. J. Fluid Mech. 81, 273–294 (1977)

    Article  MATH  Google Scholar 

  40. Mynard, J.P.: Computer modelling and wave intensity analysis of perinatal cardiovascular function and dysfunction. [Ph.D. Thesis], Murdoch Childrens Research Institute, Australia (2011)

  41. Siviglia, A., Toffolon, M.: Steady analysis of transcritical flows in collapsible tubes with discontinuous mechanical properties: implications for arteries and veins. J. Fluid Mech. 736, 195–215 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, J.J., Parker, K.H.: Wave propagation in a model of the arterial circulation. J. Biomech. 37, 457–470 (2004)

    Article  Google Scholar 

  43. Mynard, J.P., Davidson, M.R., Penny, D.J., et al.: A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Method Biomed. Eng. 28, 626–641 (2012)

    Article  Google Scholar 

  44. Sun, Y., Sjoberg, B.J., Ask, P., et al.: Mathematical model that characterizes transmitral and pulmonary venous flow velocity patterns. Am. J. Physiol. Heart Circ. Physiol. 268, H476–H489 (1995)

    Google Scholar 

  45. He, Y., Liu, H., Himeno, R.: A one-dimensional thermo-fluid model of blood circulation in the human upper limb. Int. J. Heat Mass Transf. 47, 2735–2745 (2004)

    Article  MATH  Google Scholar 

  46. Smith, N.P., Pullan, A.J., Hunter, P.J.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62, 990–1018 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. Harmon Jr., J.V., Edwards, W.D.: Venous valves in subclavian and internal jugular veins. Frequency, position, and structure in 100 autopsy cases. Am. J. Cardiovasc. Pathol. 1, 51–54 (1987)

    Google Scholar 

  48. Nishihara, J., Takeuchi, Y., Miyake, M., et al.: Distribution and morphology of valves in the human external jugular vein: indications for utilization in microvascular anastomosis. Int. J. Oral. Maxillofac. Surg. 54, 879–882 (1996)

  49. Chou, C.H., Chao, A.C., Hu, H.H.: Ultrasonographic evaluation of vertebral venous valves. AJNR Am. J. Neuroradiol. 23, 1418–1420 (2002)

    Google Scholar 

  50. Celepci, H., Brenner, E.: Position of valves within the subclavian and axillary veins. J. Vasc. Surg. 54, 70S–76S (2011)

    Article  Google Scholar 

  51. Iimura, A., Nakamura, Y., Itoh, M.: Anatomical study of distribution of valves of the cutaneous veins of adult’s limbs. Ann. Anat. 185, 91–95 (2003)

    Article  Google Scholar 

  52. Baptista-Silva, J.C.C., Dias, A.L., Cricenti, S.V., et al.: Anatomy of the basilic vein in the arm and its importance for surgery. Braz. J. Morphol. Sci. 20, 171–175 (2003)

    Google Scholar 

  53. Santos, C.A.S.D., Figueiredo, L.F.P.D., Gusmão, L.C.B.D., et al.: Valves of the common brachial vein: anatomical study. J. Vasc. Br. 6, 35–41 (2007)

    Article  Google Scholar 

  54. Kiray, A., Ergur, I., Tayefi, H., at al.: Anatomical evaluation of the superficial veins of the upper extremity as graft donor source in microvascular reconstructions: a cadaveric study. Acta Orthop. Traumatol. Turc. 47, 405–410 (2013)

  55. Thiranagama, R., Chamberlain, A.T., Wood, B.A.: Valves in superficial limb veins of humans and nonhuman primates. Clin. Anat. 2, 135–145 (1989)

    Article  Google Scholar 

  56. Mühlberger, D., Morandini, L., Brenner, E.: An anatomical study of femoral vein valves near the saphenofemoral junction. J. Vasc. Surg. 48, 994–999 (2008)

    Article  Google Scholar 

  57. Schweighofer, G., Mühlberger, D., Brenner, E.: The anatomy of the small saphenous vein: fascial and neural relations, saphenofemoral junction, and valves. J. Vasc. Surg. 51, 982–989 (2010)

    Article  Google Scholar 

  58. Moore, H.M., Gohel, M., Davies, A.H.: Number and location of venous valves within the popliteal and femoral veins-a review of the literature. J. Anat. 219, 439–443 (2011)

    Article  Google Scholar 

  59. Gottlob, R., May, R.: Venous Valves: Morphology, Function, Radiology. Surgery. Springer, New York (2012)

    Google Scholar 

  60. Franklin, K.J.: Valves in veins: an historical survey. J. R. Soc. Med. 21, 1–33 (1927)

    Google Scholar 

  61. Reymond, P., Merenda, F., Perren, F., et al.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297, H208–H222 (2009)

    Article  Google Scholar 

  62. Wexler, L., Bergel, D.H., Gabe, I.T., et al.: Velocity of blood flow in normal human venae cavae. Circ. Res. 23, 349–359 (1968)

    Article  Google Scholar 

  63. Ochsner, A., Colp, R., Burch, G.E.: Normal blood pressure in the superficial venous system of man at rest in the supine position. Circulation 3, 674–680 (1951)

    Article  Google Scholar 

  64. Meissner, M.H.: Lower extremity venous anatomy. Semin. Interv. Radiol. 22, 147–156 (2005). doi:10.1055/s-2005-921948

    Article  Google Scholar 

  65. Groothuis, J.T., Poelkens, F., Wouters, C.W., et al.: Leg intravenous pressure during head-up tilt. J. Appl. Physiol. 105, 811–815 (2008)

    Article  Google Scholar 

  66. Gisolf, J., Van Lieshout, J.J., Van Heusden, K., et al.: Human cerebral venous outflow pathway depends on posture and central venous pressure. J. Physiol. 560, 317–327 (2004)

    Article  Google Scholar 

  67. Keijsers, J.M.T., Leguy, C.A.D., Huberts, W., et al.: A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function. Int. J. Numer. Method Biomed. Eng. 31, e02716 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Hao Liu was partly supported by a Grant-in-Aid for Scientific Research (Grant 17300141), Japan Society for the Promotion of Science and Research and Development of the Next Generation Integrated Simulation of Living Matter, JST, a part of the Development and Use of the Next Generation Supercomputer Project of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. XZ acknowledges the RIKEN Junior Research Associate Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Appendices

Appendix A: Cardiopulmonary model

Modeling of cardiac chambers

The heart is modeled as four chambers with cardiac contraction represented by a time-varying elastance E(t) [15],

$$\begin{aligned} E(t)=E _{\mathrm{A}} e(t)+E _{\mathrm{B}} , \end{aligned}$$
(A1)

where \(E_{\mathrm {A}}\) denotes the elastance amplitude, \(E_{\mathrm {B}}\) the elastance baseline, and e(t) the normalized time-varying elastance. The term e(t) can be further expressed for ventricles as

$$\begin{aligned} e_{v} (t)=\left\{ {\begin{array}{ll} 0.5\left[ {1-\cos \left( {{\uppi }t/t_\mathrm{vcp} } \right) } \right] ,&{} 0<t\le t _{\mathrm{vcp}} , \\ 0.5\left[ {1+\cos ({{\uppi }\left( {t-t _{\mathrm{vcp}} } \right) /t _{\mathrm{vrp}} }) } \right] , &{}t_{\mathrm{vcp}}<t\le t _{\mathrm{vcp}} +t _{\mathrm{vrp}} , \\ 0, &{}t _{\mathrm{vcp}} +t _{\mathrm{vrp}} <t\le t_{0} , \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(A2)

and for atria as

$$\begin{aligned} e_{a} (t)=\left\{ {\begin{array}{ll} 0.5\left[ {1+\cos \left( {{\uppi }\left( {t+t_{0} -t _{\mathrm{ar}} } \right) /t _{\mathrm{arp}} } \right) } \right] , &{}0\le t\le t _{\mathrm{ar}} +t _{\mathrm{arp}} -t_{0} , \\ 0, &{}t _{\mathrm{ar}} +t _{\mathrm{arp}} -t_{0}<t\le t _{\mathrm{ac}} , \\ 0.5\left[ {1-\cos \left( {{\uppi }\left( {t-t _{\mathrm{ac}} } \right) /t _{\mathrm{acp}} } \right) } \right] , &{}t_{\mathrm{ac}}<t\le t _{\mathrm{ac}} +t _{\mathrm{acp}} , \\ 0.5\left[ {1+\cos \left( {{\uppi }\left( {t-t _{\mathrm{ar}} } \right) /t _{\mathrm{arp}} } \right) } \right] , &{}t _{\mathrm{ac}} +t _{\mathrm{acp}} <t\le t_{0} , \\ \end{array}} \right. \nonumber \\ \end{aligned}$$
(A3)

where \(t_{\mathrm {0}}\) represents the time period of a cardiac cycle (s), \(t_{\mathrm {vcp}}, t_{\mathrm {acp}}, t_{\mathrm {vrp}}\), and \(t_{\mathrm {arp}}\) the durations of ventricular/atrial contraction/relaxation (s), respectively, and \(t_{\mathrm {ac}}\) and \(t_{\mathrm {ar}}\) the time points at which the atria begin to contract and relax (s). The cardiac chamber pressure can be further obtained as

$$\begin{aligned} p_{h} (t)=E(t)(V-V_{0} )+S\frac{\text{ d }V}{\text{ d }t}, \end{aligned}$$
(A4)

where V is the cardiac chamber volume, \(V_{\mathrm {0}}\) the dead chamber volume, and S the viscoelasticity coefficient of the cardiac wall.

Modeling of pulmonary circulation

Pulmonary circulation is modeled with three compartments: pulmonary artery, the pulmonary capillary, and the pulmonary vein. The elastance (E) of pulmonary circulation is defined by [21]

$$\begin{aligned} E=E_{0} \cdot e^{{V/\phi }}, \end{aligned}$$
(A5)

where \(E_{\mathrm {0}}\) denotes the zero volume elastance, V the blood volume, and \(\phi \) the volume constant. Pulmonary pressure is then obtained as

$$\begin{aligned} P=E\cdot \phi . \end{aligned}$$
(A6)
Fig. B1 17
figure 17

Flowcharts of two numerical methods for 0D–1D coupling. a Characteristic method. b “Ghost-point” method

Appendix B: 0D–1D coupling algorithm

Here we present two numerical methods associated with coupling of a 1D vascular network and 0D lumped-parameter models. As depicted in Fig. 2, the 1D vessels that supply blood to the 0D lumped-parameter models are defined as feeding vessels and include terminal arteries, superior vena cava, and inferior vena cava, whereas the 1D vessels that collect blood from the 0D lumped-parameter models are called draining vessels and consist of ascending aorta and terminal veins.

Characteristic method

With respect to this method, the characteristic variants are used to set boundary conditions. The 1D governing equations may be transformed into a set of characteristic equations and, when the viscous resistance is ignored, can be reformulated as

$$\begin{aligned} \frac{\partial W}{\partial t}+\varLambda \frac{\partial W}{\partial x}=0, \end{aligned}$$
(B1)

with

$$\begin{aligned} W=\left[ {\begin{array}{l} W_{f} \\ W_{b} \\ \end{array}} \right] ,\quad \varLambda =\left[ {\begin{array}{l} \lambda _{f} \\ \lambda _{b} \\ \end{array}} \right] , \end{aligned}$$
(B2)

where \(W_{f,b} =u\pm \int \limits _{A_{0} }^A {\frac{c(\tau )}{\tau }} \mathrm{d}\tau \) expresses the characteristic invariants of the system, and \(\lambda _{f,b} =u\pm c\) denotes the propagation speeds of the characteristic invariants. The characteristic invariants \(W_{f,b} (t^{n+1})\) at the time \(n+1\) can be updated through an extrapolation from \(W_{f,b} (t^{n})\) at the previous time step n.

For the first node of the draining vessel, the characteristic invariant at the next time step \((n+1)\) can be updated as

$$\begin{aligned} W_{b} \left( {t^{n+1},x_{1} } \right) =W_{b} \left( {t^{n},x_{1} -\lambda _{b}^{n} \cdot \Delta t} \right) , \end{aligned}$$
(B3)

and for the last node of the feeding vessel, we have

$$\begin{aligned} W_{f} \left( {t^{n+1},x_{m} } \right) =W_{f} \left( {t^{n},x_{m} -\lambda _{f}^{n} \cdot \Delta t} \right) , \end{aligned}$$
(B4)

where \({x}_{\mathrm {1}}\) denotes the first node, \({x}_{\mathrm {m}}\) the last node, and \(\Delta {t}\) the time step. A flowchart of the characteristic variable method for 0D–1D coupling is described in detail in Fig. B1a. The limitation of this method is that it is only valid under the subcritical condition (\(S<1\)).

Fig. B1 18
figure 18

Comparison of model-predicted pressures in superior vena cava in standing posture between two different numerical methods for 0D–1D coupling

Ghost-point method

For this method, a so-called ghost point is used to set boundary conditions. At the interface connecting the 0D and 1D models, we assume that the index of the last gridpoint of the vessel is m, and the index of the first gridpoint of the vessel is 1. Then the continuity equation at the ghost point \({m}-1/2\) of the feeding vessel can be discretized such that

$$\begin{aligned} \frac{\frac{A_{m-1}^{n+1} +A_{m}^{n+1} }{2}-\frac{A_{m-1}^{n} +A_{m}^{n} }{2}}{\Delta t}+\frac{(Q)_{m}^{n+1} -(Q)_{m-1}^{n+1} }{\Delta x}=0. \end{aligned}$$
(B5)

Similarly, the continuity equation at the ghost point 1/2 of the draining vessel can be obtained as

$$\begin{aligned} \frac{\frac{A_{1}^{n+1} +A_{2}^{n+1} }{2}-\frac{A_{1}^{n} +A_{2}^{n} }{2}}{\Delta t}+\frac{(Q)_{2}^{n+1} -(Q)_{1}^{n+1} }{\Delta x}=0. \end{aligned}$$
(B6)

Thus the flow rate \({Q}^{n+1}\) can be expressed in terms of \({A}^{n+1}\):

$$\begin{aligned} Q_{m}^{n+1}= & {} Q_{m-1}^{n+1} -\frac{\Delta x}{2\Delta t}\left( {A_{m-1}^{n+1} +A_{m}^{n+1} -A_{m-1}^{n} -A_{m}^{n} } \right) ,\nonumber \\ \end{aligned}$$
(B7)
$$\begin{aligned} Q_{1}^{n+1}= & {} Q_{2}^{n+1} +\frac{\Delta x}{2\Delta t}\left( {A_{1}^{n+1} +A_{2}^{n+1} -A_{1}^{n} -A_{2}^{n} } \right) . \end{aligned}$$
(B8)

A schematic description of the flowchart associated with the ghost-point method for the 0D–1D coupling is also given in Fig. B1b.

Figure B2 shows a comparison of the simulated pressures using the two methods. Obviously, there is almost no visible difference between the characteristic and ghost-point. It should be pointed out that the characteristic method is merely valid in the subcritical state, whereas the ghost-point method can be applied equally to the supercritical state as well, which makes it more robust and, hence, effective for 0D–1D coupling. Therefore, we used the ghost-point method to couple the 1D vascular network model with the 0D lumped-parameter model to close up the multiscale hemodynamic model for the entire CVS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Noda, S., Himeno, R. et al. Gravitational effects on global hemodynamics in different postures: A closed-loop multiscale mathematical analysis. Acta Mech. Sin. 33, 595–618 (2017). https://doi.org/10.1007/s10409-016-0621-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0621-z

Keywords

Navigation