Advertisement

Acta Mechanica Sinica

, Volume 31, Issue 3, pp 392–405 | Cite as

Elastoplastic homogenization of particulate composites complying with the Mohr–Coulomb criterion and undergoing isotropic loading

  • D. Yang
  • Q. C. HeEmail author
Research paper
  • 195 Downloads

Abstract

This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic matrix governed by the Mohr–Coulomb yield criterion and a non-associated plastic flow rule. The composite sphere assemblage model is adopted, and closed-form estimates are derived for the effective elastoplastic properties of the composite either under tensile or compressive isotropic loading. In the case when elastic particles reduce to voids, the composite in question degenerates into a porous elastoplastic material. The results obtained in the present work are of interest, in particular, for soil mechanics.

Graphical abstract

Keywords

Composite Porous medium Elastoplasticity Mohr–Coulomb yield criterion Non-associated flow rule Homogenization 

References

  1. 1.
    Le Quang, H., He, Q.C.: Effective pressure-sensitive elastoplastic behavior of particle-reinforced composites and porous media under isotropic loading. Int. J. Plast. 24, 343–370 (2008)zbMATHCrossRefGoogle Scholar
  2. 2.
    Dvorak, G.: Micromechanics of Composite Materials. Springer, Netherlands (2012)Google Scholar
  3. 3.
    Hashin, Z.: The elastic moduli of heterogeneous materials. ASME J. Appl. Mech. 29, 143–150 (1962)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Hashin, Z., Shtrikman, S.: A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131 (1962)zbMATHCrossRefGoogle Scholar
  5. 5.
    Chen, W.F.: Limit Analysis and Soil Mechanics. Elsevier, New York (1975)Google Scholar
  6. 6.
    Van Tiel, J.: Convex Analysis: An Introduction Text. Wiley, New York (1984)Google Scholar
  7. 7.
    Chen, W.F., Han, D.J.: Plasticity for Structural Engineers. Springer, New York (1988)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bousshine, L., Chaaba, A., De Saxce, G.: Softening in stress-strain curve for Drucker–Prager non-associated plasticity. Int. J. Plast. 17, 21–46 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hjiaj, M., Fortin, J., de Sacre, G.: A complete stress update algorithm for the non-assiciated Drucker–Prager model including treatment of the apex. Int. J. Eng. Sci. 41, 1109–1143 (2003)CrossRefGoogle Scholar
  10. 10.
    Cheng, L., Jia, Y., Oueslati, A., et al.: Plastic limit state of the hollow sphere model with non-associated Drucker–Prager material under isotropic loading. Comput. Mater. Sci. 62, 210–215 (2012)Google Scholar
  11. 11.
    He, Q.C., Vallée, C., Lerintiu, C.: Explicit expressions for the plastic normality-flow rule associated to the Tresca yield criterion. Z. Angew. Math. Phys. 56, 357–366 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Vallée, C., He, Q.C., Lerintiu, C.: Convex analysis of the eigenvalues of a 3D second-order symmetric tensor. J. Elast. 83, 191–204 (2006)zbMATHCrossRefGoogle Scholar
  13. 13.
    Chu, T.Y., Hashin, Z.: Plastic behavior of composites and porous media under isotropic stress. Int. J. Eng. Sci. 9, 971–994 (1971)zbMATHCrossRefGoogle Scholar
  14. 14.
    Yin, Z.Y., Chang, C.S., Hicher, P.Y., et al.: Micromechanical analysis of the behavior of stiff clay. Acta Mech. Sin. 27, 1013–1022 (2011)Google Scholar

Copyright information

© The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Mechanical EngineeringSouthwest Jiaotong UniversityChengduChina
  2. 2.Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle UMR 8208 CNRSMarne-la-ValléeFrance

Personalised recommendations