Skip to main content
Log in

Suspension of deformable particles in Newtonian and viscoelastic fluids in a microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we study a suspension of cells at a moderate volume fraction flowing in a microchannel filled with Newtonian or viscoelastic fluids and investigate the role of cell size, cell volume fraction, inertia, deformability, and fluid elasticity on the cell distribution. Our results suggest that the use of constant-viscosity viscoelastic fluid pushes the cells toward the channel centerline which can be used in microfluidic devices used for cell focusing such as cytometers. The cell-free layer increases which provides larger gap for separating rare cells in microfluidic devices. Furthermore, we show that the volumetric flow rate can be significantly enhanced with the addition of polymers in the suspending fluid. This effect enhances the processing speed which is of interest in designing microfluidic devices. This fundamental study can provide insight on the role of rheological properties of the fluid that can be tuned to control the motion of the cells for efficient design of microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Asmolov ES (1999) The inertial lift on a spherical particle in a plane poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  • Chang K-S, Olbricht WL (1993) Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J Fluid Mech 250:609–633

    Article  Google Scholar 

  • Charrier J, Shrivastava S, Wu R (1989) Free and constrained inflation of elastic membranes in relation to thermoforming non-axisymmetric problems. J Strain Anal Eng Des 24(2):55–74

    Article  Google Scholar 

  • Choi Y-S, Seo K-W, Lee S-J (2011) Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11(3):460–465

    Article  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762

    Article  MathSciNet  MATH  Google Scholar 

  • Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28(24):4511–4520

    Article  Google Scholar 

  • Cooley M, Sarode A, Hoore M, Fedosov DA, Mitragotri S, Gupta AS (2018) Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale 10(32):15350–15364

    Article  Google Scholar 

  • D’Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL (2012) Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab Chip 12(9):1638–1645

    Article  Google Scholar 

  • D’Avino G, Greco F, Maffettone PL (2017) Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu Rev Fluid Mech 49:341–360

    Article  MathSciNet  MATH  Google Scholar 

  • Del Giudice F, DAvino G, Greco F, Netti PA, Maffettone PL (2015) Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid Nanofluid 19(1):95–104

    Article  Google Scholar 

  • Del Giudice F, Sathish S, DAvino G, Shen AQ (2017) From the edge to the center: viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel. Anal Chemi

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503

    Article  Google Scholar 

  • Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79(4):046318

    Article  Google Scholar 

  • Faridi MA, Ramachandraiah H, Banerjee I, Ardabili S, Zelenin S, Russom A (2017) Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J Nanobiotechnol 15(1):3

    Article  Google Scholar 

  • Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010) Blood flow and cell-free layer in microvessels. Microcirculation 17(8):615–628

    Article  Google Scholar 

  • Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a newtonian fluid part 1. Sedimentation. J Fluid Mech 261:95–134

    Article  MATH  Google Scholar 

  • Friend J, Yeo LY (2011) Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys 83(2):647

    Article  Google Scholar 

  • Godin J, Chen C-H, Cho SH, Qiao W, Tsai F, Lo Y-H (2008) Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophoton 1(5):355–376

    Article  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    Article  Google Scholar 

  • Ho B, Leal L (1974) Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech 65(2):365–400

    Article  MATH  Google Scholar 

  • Howell PB Jr, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7):1097–1103

    Article  Google Scholar 

  • Hur SC, Tse HTK, Di Carlo D (2010) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10(3):274–280

    Article  Google Scholar 

  • Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7(2):021501

    Article  Google Scholar 

  • Karnis A, Goldsmith H, Mason S (1966) The flow of suspensions through tubes: V. inertial effects. Can J Chem Eng 44(4):181–193

    Article  Google Scholar 

  • Kilimnik A, Mao W, Alexeev A (2011) Inertial migration of deformable capsules in channel flow. Phys Fluids 23(12):123302

    Article  Google Scholar 

  • Krüger T, Kaoui B, Harting J (2014) Interplay of inertia and deformability on rheological properties of a suspension of capsules. J Fluid Mech 751:725–745

    Article  Google Scholar 

  • Kunze A, Che J, Karimi A, Di Carlo D (2015) Research highlights: cell separation at the bench and beyond. Lab Chip 15(3):605–609

    Article  Google Scholar 

  • Lancaster C, Kokoris M, Nabavi M, Clemmens J, Maloney P, Capadanno J, Gerdes J, Battrell C (2005) Rare cancer cell analyzer for whole blood applications: microcytometer cell counting and sorting subcircuits. Methods 37(1):120–127

    Article  Google Scholar 

  • Lee DJ, Brenner H, Youn JR, Song YS (2013) Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci Repo:3

  • Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98

    Article  MATH  Google Scholar 

  • Leshansky A, Bransky A, Korin N, Dinnar U (2007) Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys Rev Lett 98(23):234501

    Article  Google Scholar 

  • Li X, Pozrikidis C (2000) Wall-bounded shear flow and channel flow of suspensions of liquid drops. Int J Multiphase Flow 26(8):1247–1279

    Article  MATH  Google Scholar 

  • Li G, McKinley GH, Ardekani AM (2015) Dynamics of particle migration in channel flow of viscoelastic fluids. J Fluid Mech 785:486–505

    Article  MathSciNet  MATH  Google Scholar 

  • Lim EJ, Ober TJ, Edd JF, Desai SP, Neal D, Bong KW, Doyle PS, McKinley GH, Toner M (2014) Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat Commun 2014:5

    Google Scholar 

  • Liu C, Xue C, Chen X, Shan L, Tian Y, Hu G (2015) Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Anal Chem 87(12):6041–6048

    Article  Google Scholar 

  • Lu X, Liu C, Hu G, Xuan X (2017) Particle manipulations in non-Newtonian microfluidics: a review. J Colloid Interface Sci 500:182

    Article  Google Scholar 

  • Nam J, Tan JKS, Khoo BL, Namgung B, Leo HL, Lim CT, Kim S (2015) Hybrid capillary-inserted microfluidic device for sheathless particle focusing and separation in viscoelastic flow. Biomicrofluidics 9(6):064117

    Article  Google Scholar 

  • Paiè P, Bragheri F, Di Carlo D, Osellame R (2017) Particle focusing by 3D inertial microfluidics. Microsyst Nanoeng 3:17027

    Article  Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38

    Article  Google Scholar 

  • Pethig R (2010) Dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4(2):022811

    Article  Google Scholar 

  • Popel AS, Johnson PC (2005) Microcirculation and hemorheology. Annu Rev Fluid Mech 37:43–69

    Article  MathSciNet  MATH  Google Scholar 

  • Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Pranay P, Henríquez-Rivera RG, Graham MD (2012) Depletion layer formation in suspensions of elastic capsules in newtonian and viscoelastic fluids. Phys Fluids 24(6):061902

    Article  Google Scholar 

  • Raffiee AH, Dabiri S, Ardekani AM (2017a) Deformation and buckling of microcapsules in a viscoelastic matrix. Phys Rev E 96(3):032603

    Article  Google Scholar 

  • Raffiee AH, Dabiri S, Ardekani AM (2017b) Elasto-inertial migration of deformable capsules in a microchannel. Biomicrofluidics 11(6):064113

    Article  Google Scholar 

  • Ramanujan S, Pozrikidis C (1998) Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J Fluid Mech 361:117–143

    Article  MathSciNet  MATH  Google Scholar 

  • Romeo G, D’Avino G, Greco F, Netti PA, Maffettone PL (2013) Viscoelastic flow-focusing in microchannels: scaling properties of the particle radial distributions. Lab Chip 13(14):2802–2807

    Article  Google Scholar 

  • Saadat A, Guido CJ, Iaccarino G, Shaqfeh ESG (2018) Immersed-finite-element method for deformable particle suspensions in viscous and viscoelastic media. Phys Rev E 98(6):063316

    Article  MathSciNet  Google Scholar 

  • Schaaf C, Stark H (2017) Inertial migration and axial control of deformable capsules. Soft Matter

  • Schonberg JA, Hinch E (1989) Inertial migration of a sphere in Poiseuille flow. J Fluid Mech 203:517–524

    Article  MathSciNet  MATH  Google Scholar 

  • Segre G (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  • Seo KW, Kang YJ, Lee SJ (2014) Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys Fluids 26(6):063301

    Article  Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6(1):83–89

    Article  Google Scholar 

  • Skalak R, Tozeren A, Zarda R, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264

    Article  Google Scholar 

  • Sundararajan N, Pio MS, Lee LP, Berlin AA (2004) Three-dimensional hydrodynamic focusing in polydimethylsiloxane (PDMS) microchannels. J Microelectromech Syst 13(4):559–567

    Article  Google Scholar 

  • Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

    Article  MATH  Google Scholar 

  • van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, Den Toonder JM (2011) Circulating tumor cell isolation and diagnostics: toward routine clinical use

  • Villone M, DAvino G, Hulsen M, Greco F, Maffettone P (2013) Particle motion in square channel flow of a viscoelastic liquid: migration vs. secondary flows. J Non-Newtonian Fluid Mech 195:1–8

    Article  Google Scholar 

  • Yang S, Kim JY, Lee SJ, Lee SS, Kim JM (2011) Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11(2):266–273

    Article  Google Scholar 

  • Zeng L, Balachandar S, Fischer P (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25

    Article  MATH  Google Scholar 

  • Zhao H, Shaqfeh ES, Narsimhan V (2012) Shear-induced particle migration and margination in a cellular suspension. Phys Fluids 24(1):011902

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a Grant from National Science Foundation [CBET-1705371].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo M. Ardekani.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Particle motion in non-Newtonian microfluidics” guest edited by Xiangchun Xuan and Gaetano D’Avino.

Appendix

Appendix

To check the mesh and the domain size independency of the computational results, we follow the method used in Doddi and Bagchi (2009), where the volumetric flow rate of the flow is investigated for various grid and domain sizes. Figure 18a shows the volumetric flow rate of the cell suspension in a Newtonian fluid at \(Re=100\), \(\phi =10\%\) and \(\frac{a}{W}=0.3\) for various La numbers with \(128\times 76\times 76\) and \(200\times 133\times 133\) grid points in x, y, and z directions, respectively. The maximum error between two different grid sizes is \(2.44\%\). Hence, our results indicate that the numerical simulation performed in this study is independent of the mesh sizes. The results for the domain independency of the simulation are also plotted in Fig. 18b. The variation of the volumetric flow rate at \(Re=100\), \(\phi =10\%\), and \(\frac{a}{W}=0.3\) for two different domain sizes (\(L_x=4W\) and 8W) in the x direction along which the periodic boundary condition is considered. The maximum error between two channel geometries is \(0.71\%\) that proves the independency of the numerical results against the computational domain size.

Fig. 18
figure 18

Volumetric flow rate at \(Re=100\), \(\phi =10\%\) and \(\frac{a}{W}=0.3\) a for \(128\times 76\times 76\) and \(200\times 133\times 133\) grid points and b for \(L_x=4W\) and 8W in x direction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raffiee, A.H., Dabiri, S. & Ardekani, A.M. Suspension of deformable particles in Newtonian and viscoelastic fluids in a microchannel. Microfluid Nanofluid 23, 22 (2019). https://doi.org/10.1007/s10404-018-2182-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-018-2182-x

Keywords

Navigation