Skip to main content
Log in

Chemical Composition and Biological Activity of Physalis peruviana L.

Chemische Zusammensetzung und biologische Aktivität von Physalis peruviana L.

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Physalis peruviana L. belongs to the family Solanaceae and is considered as plant used for treating various diseases. The protective mechanism of Physalis consists of the ability to scavenge reactive oxygen species (ROS) and to enhance the antioxidant system in the human body. The ethanolic extract of Physalis peruviana fruits contains valuable and active compounds such as carotenoids, phenols, flavonoids, tannin, alkaloids, vitamins C, B3 and B6. Therefore, Physalis peruviana extract has antioxidant and antimicrobial activity against gram-positive and gram-negative bacteria. Gram-positive Bacillus cereus demonstrated higher susceptibility than gram-negative Escherichia coli and Pseudomonas typhimureum. Also, the extract showed positive effect on the fungus used (Aspergillus niger and Candida albicans). In addition, high concentrations of Physalis peruviana ethanolic extract (800 µg/ml) exhibited significant anticancer activity against lung (A549) cells but slight effect against colorectal adenocarcinoma (Caco-2) cells.

Zusammenfassung

Physalis peruviana L. gehört zur Familie der Solanaceae und gilt als Pflanze, die zur Behandlung verschiedener Krankheiten eingesetzt wird. Der Schutzmechanismus der Physalis besteht in der Fähigkeit, reaktive Sauerstoffspezies (ROS) abzufangen und das antioxidative System im menschlichen Körper zu verbessern. Der ethanolische Extrakt der Physalis peruviana-Früchte enthält wertvolle und aktive Verbindungen wie Carotinoide, Phenole, Flavonoide, Tannine, Alkaloide, Vitamin C, B3 und B6. Daher besitzt der Extrakt von Physalis peruviana eine antioxidative und antimikrobielle Aktivität gegen grampositive und gramnegative Bakterien. Grampositive Bacillus cereus zeigten eine höhere Empfindlichkeit als gramnegative Escherichia coli und Pseudomonas typhimureum. Außerdem wies der Extrakt eine positive Wirkung auf den verwendeten Pilz (Aspergillus niger und Candida albicans) auf. Darüber hinaus zeigten hohe Konzentrationen des ethanolischen Extrakts von Physalis peruviana (800 µg/ml) eine signifikante antikanzerogene Aktivität gegen Lungenzellen (A549), aber eine geringe Wirkung gegen kolorektale Adenokarzinomzellen (Caco-2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Rahim EA, El-Beltagi HS (2010) Constituents of apple, parsley and lentil edible plants and their therapy treatments for blood picture as well as liver and kidneys functions against lipidemic disease. Electron J Environ Agric Food Chem 9:1117–1127

    CAS  Google Scholar 

  • Adham AN (2015) Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Osimum basilicum. J Pharmacogn Phytochem 3(6):130–139

    CAS  Google Scholar 

  • Afify AEMMR, Shalaby EA, El-Beltagi HS (2011) Antioxidant activity of aqueous extracts of different caffeine products. Not Bot Hort Agrobot Cluj 39:117–123

    Article  CAS  Google Scholar 

  • Al-Olayan E, Elkhadragy MF, Othman MS, Aref A, Kassab R, Abdel Moneim AE (2014) The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and down regulation of MMP-9 expression. Oxid Med Cell Longev 2014:381413

    Article  PubMed  PubMed Central  Google Scholar 

  • Albala-Hurtado S, Veciana-Nogues MT, Izquierdo-Pulido M, Marine-Font A (1997) Determination of water-soluble vitamins in infant milk by high performance liquid chromatography. J Chromatogr A 778:247–253

    Article  CAS  PubMed  Google Scholar 

  • Aletor VA (1993) Allelochemicals in plant food and feedingstuffs; 1, Nutrtional, biochemical and physiological aspects in animal production. Vet Hum Toxicol 35:57–67

    CAS  PubMed  Google Scholar 

  • Anand G, Sumithira G, Chinna R, Muthukumar A (2013) In vitro and In vivo anticancer activity of hydro alcoholic extract of Ipomoea cornea leaf against Ehrlich Ascites Carcinoma cell lines. Int J Adv Pharm Gen Res 1(1):39–54

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  PubMed  Google Scholar 

  • Birt DF, Hendrich S, Wang W (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther 90:157–177

    Article  CAS  PubMed  Google Scholar 

  • Bravo K, Sepulveda-Ortega S, Lara-Guzman O, Navas-Arboleda AA, Osorio E (2015) Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.). J Sci Food Agr 95(7):1562–1569

    Article  CAS  Google Scholar 

  • Castro A, Rodriguez L, Vargas E (2008) Dry gooseberry (Physalis peruviana L) with pretreatment of osmotic dehydration. Vitae Rev Fac Quim Farm 15(2):226–231

    CAS  Google Scholar 

  • Corporación CI, Universidad de los A, de Departamento PN (1994) Análisis internacional del sector hortofrutícola para Colombia. El Diseño, Bogotá, p 165

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents: clinical microbiology reviews. Am Soc Microbiol 12(4):564–582

    CAS  Google Scholar 

  • Cuvelier ME, Richard H, Berset C (1992) Comparison of the antioxidative activity of some acid-phenols: structure-activity relationships. Biosci Biotechnol Biochem 56:324–325

    Article  CAS  Google Scholar 

  • Dimayuga RE, Virgen M, Ochoa N (1998) Antimicrobial activity of medicinal plants from Baja California Sur (México). Pharm Biol 36(1):33–43

    Article  Google Scholar 

  • Dinan L, Sarker S, Sik V (1997) 28-hydroxywithanolide E from Physalis peruviana. Photochemistry 44:509–512

    Article  CAS  Google Scholar 

  • Eisenhauer B, Natoli S, Liew G, Flood VM (2017) Lutein and zeaxanthin-Food sources, bioavailability and dietary variety in age-related macular degeneration protection. Nutrients 9(2):1–14

    Article  CAS  Google Scholar 

  • El-Desoky AH, Abdel-Rahman RF, Ahmed OK, El-Beltagi HS, Hattori M (2018) Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: In vitro and in vivo evidence. Phytomedicine 42:126–134

    Article  CAS  PubMed  Google Scholar 

  • Erkaya T, Dağdemir E, Şengül M (2012) Influence of Cape gooseberry (Physalis peruviana L.) addition on the chemical and sensory characteristics and mineral concentrations of ice cream. Food Res Int 45:331–335

    Article  CAS  Google Scholar 

  • FAOSTAT (2013) Agricultural data, agricultural production, crop primary. http://faostat.fao.org/faostat

    Google Scholar 

  • Fischer G, Ebert G, Ludders P (2000) Provitamin A carotenoids, organic acids and ascorbic acid content of cape gooseberry (Physalis peruviana L.) ecotypes grown at two tropical altitudes. Acta Hortic 531:263–267

    Article  CAS  Google Scholar 

  • Goupy P, Hugues M, Biovin P, Amiot MJ (1999) Antioxidant composition and activity of barley (Hordeum vulgare) and malt extracts and of isolated phenolic compounds. J Sci Food Agric 79:1625–1634

    Article  CAS  Google Scholar 

  • Hassanien MFR (2011) Physalis peruviana: A rich source of bioactive phytochemicals for functional foods and pharmaceuticals. Food Rev Int 27:259–273

    Article  CAS  Google Scholar 

  • Jaca TP, Kambizi L (2011) Antibacterial properties of some wild leafy vegetables of the Eastern Cape Province , South Africa. J Med Plants Res 5(13):2624–2628

    Google Scholar 

  • Jeyanthi RL, Sharmila S, Das MP, Seshiah C (2014) Extraction and purification of carotenoids from vegetables. J Chem Pharm Res 6(4):594–598

    Google Scholar 

  • Jyothibasu T, Venkata K (2015) Pharmacological review on Physalis species: a potential herbal cure—all. World Res J Pharm Res 4(2):247–256

    Google Scholar 

  • Keith B, McGaw BA, Woolley JG (1992) Phygrine, an alkaloid from Physalis species. Phytochemistry 31:4173–4176

    Article  Google Scholar 

  • Kobeasy MI, El-Beltagi HS, El-Shazly MA, Khattab EA (2011) Induction of resistance in Arachis hypogaea L. Against Peanut mottle virus by nitric oxide and salicylic acid. Physiol Mol Plant Pathol 76:112–118

    Article  CAS  Google Scholar 

  • Lan YH, Chang FR, Pan MJ, Wu CC, Wu SJ, Chen SL, Wang SS, Wu MJ, Wu YC (2009) New cytotoxic with anolides from Physalis peruviana. Food Chem 116:462–469

    Article  CAS  Google Scholar 

  • Latham M (2002) Vitaminas. In: Nutrición humana en el mundo en desarrollo, vol 29. FAO, Roma, pp 119–131

    Google Scholar 

  • Licodiedoff S, André L, Koslowski D, Ribani RH (2013a) Flavonols and antioxidant activity of Physalis peruviana L. fruit at two maturity stages. Acta Sci Technol 35(2):393–399

    Article  CAS  Google Scholar 

  • Licodiedoff S, Koslowski LAD, Ribani RH (2013b) Flavonol rates of gosseberry fruits Physalis peruviana determined by HPLC through the optimization and validation of the analytic method. Int J Food Sci Nutr 3(1):1–6

    Google Scholar 

  • Lunawati L, Stephen R, Teresa S (2012) Role of antioxidant in the prevention of cancer. J Exp Clin Med 4(4):2015–2022

    Google Scholar 

  • Mancinelli AL, Yang CH, Rabino I, Kuzmanoff K (1976) Photo control of anthocyanin synthesis. Plant Physiol 58:214–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattila P, Astola J, Kumpulainen J (2000) Determination of flavonoids in plant material by HPLC with diode-array and electro-array detections. J Agric Food Chem 48:5834–5841

    Article  CAS  PubMed  Google Scholar 

  • Mayorga H, Knapp H, Winterhalter P, Duque C (2001) Glycosidically bound flavor compounds of cape gooseberry (Physalis peruviana L.). J Agric Food Chem 49:1904–1908

    Article  CAS  PubMed  Google Scholar 

  • Mishra AK, Mishra A, Kehri HK et al (2009) Inhibitory activity of India specie plant cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds. Ann Clin Microbiol Antimicrob 8:9. https://doi.org/10.1186/1476-0711-8-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Naidu K (2003) Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2(1):1–10

    Article  Google Scholar 

  • Narváez-Cuenca CE, Mateus-Gómez A, Restrepo-Sánchez LP (2014) Antioxidant capacity and total phenolic content of air-dried Cape gooseberry (Physalis peruviana L.) at different ripeness stages. Agron Colomb 32:232–237

    Article  Google Scholar 

  • Nijveldt RJ, Van Nood E, Van Hoorn DE, Boelens PG, Van Norren K, Van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    Article  CAS  PubMed  Google Scholar 

  • Novoa HR, Bojaca M, Galvis JA, Fischer G (2006) Fruit maturity and calyx drying influence post-harvest behavior of Cape gooseberry (Physalis peruviana L.) stored at 12 °C. Agron Colomb 24(1):77–86

    Google Scholar 

  • Oke F, Aslim B, Ozturk S, Altundag S (2009) Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chem 112:874–879

    Article  CAS  Google Scholar 

  • Okwu DE, Josiah C (2006) Evaluation of the chemical composition of two Nigerian medicinal plants. Afr J Biotechnol 5:357–361

    CAS  Google Scholar 

  • Olivares-Tenorio ML, Dekker M, Verkerk R, van Boekel MAJS (2016) Health-promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci Technol 57(Part A):83–92

    Article  CAS  Google Scholar 

  • Özgür Ç, Murat P, Elif Ç, Bilgin C, Kerem F (2014) Evaluation of biological activities of Physalis peruviana ethanol extracts and expression of Bcl-2 genes in HeLa cells. Food Sci Technol 34(2):422–430

    Article  Google Scholar 

  • Park H‑R, Park E, Rim A‑R, Jeon K‑I, Hwang J‑H, Lee S‑C (2006) Antioxidant activity of extracts from Acanthopanax senticosus. Afr J Biotechnol 5(23):2388–2396

    Google Scholar 

  • Puente LA, Pinto-Muñoz CA, Castro ES, Cortés M (2011) Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res Int 44:1733–1740

    Article  CAS  Google Scholar 

  • Ramadan M, Morsel J (2003) Oil goldenberry (Physalis peruviana L.). J Agric Food Chem 51(4):969–974

    Article  CAS  PubMed  Google Scholar 

  • Ramadan MM, El-Ghorab AH, Ghanem KZ (2015) Volatile compounds, antioxidants, and anticancer activities of Cape gooseberry fruit (Physalis peruviana L.): an in-vitro study. J Arab Soc Med Res 10:56–64

    Article  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez S, Rodríguez E (2007) Efecto de la ingesta de Physalis peruviana (aguaymanto) sobre la glicemia postprandial en adultos jóvenes. Rev Med Vallejiana 4(1):43–52

    Google Scholar 

  • Roger MF, Wink M (1998) Alkaloids: biochemistry, ecology and medicinal applications. Plennum press, New York. https://doi.org/10.1007/978-1-4757-2905-4

  • Saxena V, Mishra G, Saxena A, Vishwakarma KR (2013) A comparative study on quantitative estimation of tannins in Terminalia chebula, Terminalia belerica, Terminalia arjuna and Saraca indica using spectrophotometer. Asian J Pharm Clin Res 6(3):148–149

    Google Scholar 

  • Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herb Med 4(4):59–64

    Google Scholar 

  • Singleton V, Rossi J (1965) Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sofowara EA (1993) Medicinal plants and traditional medicine in Africa. Spectrum Books, Ibadan, pp 55–71

    Google Scholar 

  • Sözgen Başkan K, Tütem E, Özer N, Apak R (2013) Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. J Agric Food Chem 61(47):11371–11381

    Article  PubMed  CAS  Google Scholar 

  • Sumathy N, Sumathy J (2011) Antibacterial and antifungal activity of musa fruit peels against skin and gastrointestinal tract diseases. Herbal Tech Ind 2:9–11

    Google Scholar 

  • Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaremia HL-60 cells. Eur J Cancer 35:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Watson D, Oliveira GEJ (1999) Solid-phase extraction and gas chromatography-mass spectroscopy determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba. J Chromatogr B Biomed Sci Appl 723:203–210

    Article  CAS  PubMed  Google Scholar 

  • Wu SJ, Ng LT, Chen CH, Lin DL, Wang SS, Lin CC (2004) Antihepatoma activity of Physalis angulata and P. Peruviana extracts and their effects on apoptosis in human Hep G2 cells. Life Sci 74(16):2061–2073

    Article  CAS  PubMed  Google Scholar 

  • Yao LH, Jiang Y, Shi J, Tomas-Barberan F, Datta N, Singanusong R, Chen S (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  PubMed  Google Scholar 

  • Yen CY, Chiu CC, Chang FR, Chen JY, Hwang CC, Hseu YC, Yang HL, Lee AY, Tsai MT, Guo ZL, Cheng YS, Liu YC, Lan YH, Chang YC, Ko YC, Chang HW, Wu YC (2010) 4b-Hydroxywithanolide E from Physalis peruviana (golden berry) inhibits growth of human lung cancer cells through DNA damage, apoptosis and G2/M arrest. BMC Cancer 10(46):1–8

    Google Scholar 

  • Yıldız G, Izli N, Ünal H, Uyla¸ser V (2015) Physical and chemical characteristics of goldenberry fruit (Physalis peruviana L.). J Food Sci Technol 52(4):2320–2327

    Article  PubMed  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to show appreciation to Faculty of Agriculture, Cairo University and Cairo University, Research Park (CURP) for continuing cooperation to support research that provided facilities necessary to accomplish the most wanted objectives of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossam S. El-Beltagi.

Ethics declarations

Conflict of interest

H. S. El-Beltagi, H. I. Mohamed, G. Safwat, M. Gamal and B. M. H. Megahed declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Beltagi, H.S., Mohamed, H.I., Safwat, G. et al. Chemical Composition and Biological Activity of Physalis peruviana L.. Gesunde Pflanzen 71, 113–122 (2019). https://doi.org/10.1007/s10343-019-00456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00456-8

Keywords

Schlüsselwörter

Navigation