Skip to main content
Log in

Cold Hardiness Assessment in Seven Commercial Fig Cultivars (Ficus Carica L.)

Beurteilung der Winterhärte von sieben kommerziellen Feigensorten (Ficus Carica L.)

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Freezing injury is one of the most restrictive dynamics issues that commercial fig producers are fronting. This study was aimed to compare cold hardiness among seven commercial fig cultivars at three different developmental stages. We investigated the association between freezing tolerance and soluble carbohydrate and proline fluctuations during acclimation in the one-year-old fig shoots. Using both electrolyte leakage measurement and tetrazolium stain test LT50 values were calculated, which differentiate freezing tolerance among the studied cultivars. The results showed significant differences among the cultivars at three evaluation stages of dormancy. The average of cold winter resistance in studied cultivars in November, January, and March, were −16.89, −20.23, and −21.35 °C, respectively. LT50 electrolyte leakage, cold hardiness index, significantly varied among the fig cultivars. In November to January, ‘Atabaki’ and ‘Kashki’ cultivars showed the maximum of −0.11 °C/per day, and the minimum of −0.01 °C/per day of adaptation rate, respectively. Soluble carbohydrate (sugars) concentrations of shoot samples increased during cold acclimation from November (49 mg/g dry weight (DW)) to January (130 mg/g DW) and then decreased in March (93 mg/g DW). Proline content varied significantly among the cultivars in November and January. High correlations were observed between LT50 values and the soluble carbohydrates content compared with proline. Soluble sugars content might be a better indication of cold hardiness than proline content in fig trees. ‘Atabaki’ cultivar showed a very good resistance to winter freezing in comparison to others cultivars, although it seems to be very sensitive to fall freezing. The outcome of this study can be considered for sustainable production and breeding programs in common figs.

Zusammenfassung

Frostschäden zählen zu den restriktivsten dynamischen Problemen, mit denen kommerzielle Feigenproduzenten konfrontiert sind. Ziel dieser Studie war es, die Winterhärte von sieben kommerziellen Feigensorten in drei verschiedenen Entwicklungsstadien zu vergleichen. Wir untersuchten den Zusammenhang zwischen Gefriertoleranz und Schwankungen im Gehalt an löslichen Kohlenhydraten und Prolin bei der Akklimatisierung der einjährigen Feigentriebe. Mit Hilfe der Elektrolytverlust-Messung und des Tetrazolium-Färbetests wurden LT50-Werte berechnet, die die Gefriertoleranz der untersuchten Sorten bestimmen. Die Ergebnisse zeigten signifikante Unterschiede zwischen den Sorten in den drei Bewertungsphasen der Keimruhe. Der Durchschnitt der Kälteresistenz bei den untersuchten Sorten im November, Januar und März betrug −16,89, −20,23 bzw. −21,35 °C. Die LT50 durch Messung des Elektrolytverlusts variierte signifikant zwischen den Feigensorten. In den Monaten November bis Januar zeigten die Sorten ‚Atabaki‘ und ‚Kashki‘ das Maximum von −0,11 °C/pro Tag bzw. das Minimum von −0,01 °C/pro Tag. Die Konzentration an löslichen Kohlenhydraten (Zucker) stieg während der Kälteakklimatisierung von November (49 mg/g Trockengewicht (DW)) bis Januar (130 mg/g DW) und sank dann im März (93 mg/g DW). Der Prolin-Gehalt unterschied sich signifikant zwischen den Sorten im November und Januar. Es wurden hohe Korrelationen zwischen den LT50-Werten und dem Gehalt an löslichen Kohlenhydraten im Vergleich zu Prolin beobachtet. Der Gehalt an löslichen Zuckern könnte ein besserer Indikator für die Winterhärte von Feigenbäumen sein als der Gehalt an Prolin. Die Sorte ‚Atabaki‘ zeigte im Vergleich zu anderen Sorten eine sehr gute Frostbeständigkeit im Winter, obwohl sie sehr empfindlich gegenüber Frost im Herbst zu sein scheint. Die Ergebnisse dieser Studie können für nachhaltige Produktions- und Zuchtprogramme in Feigen berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amiri M (2006) The status of genetic resources of deciduous, tropical, and subtropical fruit species in Iran. XXVII International Horticultural Congress-IHC2006: International Symposium on Asian Plants with Unique Horticultural 769, pp 159–167

    Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  Google Scholar 

  • Aslamarz AA, Vahdati K, Rahemi M, Hassani D, Leslie C (2010) Supercooling and cold-hardiness of acclimated and deacclimated buds and stems of Persian walnut cultivars and selections. HortScience 45:1662–1667

    Google Scholar 

  • Bafeel SO (2005) Fatty acid composition and cold hardiness of pecan cultivars. Mississippi State University. Department of Plant and Soil Sciences, Starkville Mississippi State, MS

    Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Burke M, Gusta L, Quamme H, Weiser C, Li P (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Calkins JB, Swanson BT (1990) The distinction between living and dead plant tissue—viability tests in cold hardiness research. Cryobiology 27:194–211

    Article  Google Scholar 

  • Crocker TE (1994) The fig. University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, EDIS, Gainesville

    Google Scholar 

  • Darjazi BB (2011) Morphological and pomological characteristics of fig (Ficus carica L.) cultivars from Varamin, Iran. Afr J Biotechnol 10:19096

    Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Faust M (1989) Physiology of temperate zone fruit trees. John Wiley & Sons Inc., New York

    Google Scholar 

  • Ferguson L, Michailides TJ, Shorey HH (2011) The California fig industry. Hortic Rev (Am Soc Hortic Sci) 12:409–489

    Google Scholar 

  • Fiorino P, Mancuso S (2000) Differential thermal analysis, supercooling and cell viability in organs of Olea europaea at subzero temperatures. Adv Hortic Sci 14:23–27

    Google Scholar 

  • Flaishman MA, Rodov V, Stover E (2008) The fig: botany, horticulture, and breeding. Horticultural reviews. John Wiley & Sons, Hoboken, Wstreport Then Estport New York, pp 113–196

    Google Scholar 

  • Kammereck KDR (1987) Seasonal variation of cold resistance in Malus woody tissue as determined by differential thermal analysis and viability tests. Can J Bot 65:2640–2645

    Article  Google Scholar 

  • Karami Ghanavati SHMF (2008) Complementary study of major charactristics of edible fig (Ficus carica L.) grown in Fars province. Seed Plant Impro J 24:193–205

    Google Scholar 

  • Kislev ME, Hartmann A, Bar-Yosef O (2006) Early domesticated fig in the Jordan Valley. Science 312:1372–1374

    Article  CAS  Google Scholar 

  • Kitaura K (1967) Supercooling and ice formation in mulberry trees. Cellular injury and resistance in freezing organisms, pp 143–156

    Google Scholar 

  • Larcher W (2005) Climatic constraints drive the evolution of low temperature resistance in woody plants. J Agric Meteorol 61:189–202

    Article  Google Scholar 

  • Matta FB, Kawatin A (1994) Cold acclimation and deacclimation of pecan trees. Gen Tech Rep Soc 104:127–130

    Google Scholar 

  • Morin X, Améglio T, Ahas R, Kurz-Besson C, Lanta V, Lebourgeois F, Miglietta F, Chuine I (2007) Variation in cold hardiness and carbohydrate concentration from dormancy induction to bud burst among provenances of three European oak species. Tree Physiol 27:817–825

    Article  CAS  Google Scholar 

  • Murray M, Cape J, Fowler D (1989) Quantification of frost damage in plant tissues by rates of electrolyte leakage. New Phytol 113:307–311

    Article  Google Scholar 

  • Palonen P, Buszard D, Donnelly D (2000) Changes in carbohydrates and freezing tolerance during cold acclimation of red raspberry cultivars grown in vitro and in vivo. Physiol Plant 110:393–401

    Article  CAS  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Rodrigo J (2000) Spring frosts in deciduous fruit trees—morphological damage and flower hardiness. Sci Hortic 85:155–173

    Article  Google Scholar 

  • Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant 84:87–93

    Article  CAS  Google Scholar 

  • Soloklui AAG, Ershadi A, Fallahi E (2012) Evaluation of cold hardiness in seven Iranian commercial pomegranate (Punica granatum L.) cultivars. HortScience 47:1821–1825

    Google Scholar 

  • Stergios BG, Howell GS (1973) Evaluation of viability tests for cold stressed plants. Amer Soc Hort Sci J 98:325–330

    Google Scholar 

  • Sutinen ML, Arora R, Wisniewski M, Ashworth E, Strimbeck R, Palta J (2001) Mechanisms of frost survival and freeze-damage in nature. Conifer cold hardiness. Springer, New York, pp 89–120

    Book  Google Scholar 

  • Thomas FM, Meyer G, Popp M (2004) Effects of defoliation on the frost hardiness and the concentrations of soluble sugars and cyclitols in the bark tissue of pedunculate oak (Quercus robur L.). Ann Sci 61:455–463

    Article  CAS  Google Scholar 

  • Westwood MN (1988) Temperate-zone pomology. Timber Press, Portland, p 156

    Google Scholar 

  • Wisniewski M, Willick IR, Gusta LV (2017) Freeze tolerance and avoidance in plants. In: Plant stress physiology, p 179

    Google Scholar 

  • Yemm E, Willis A (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochem J 15(57):508

    Article  Google Scholar 

  • Yu DJ, Hwang JY, Chung SW, Oh HD, Yun S, Lee HJ (2017) Changes in cold hardiness and carbohydrate content in peach (Prunus persica) trunk bark and wood tissues during cold acclimation and deacclimation. Sci Hortic 219:45–52

    Article  Google Scholar 

  • Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009) Roles of plant soluble sugars and their responses to plant cold stress. Afr J Biotechnol 8:2004–2010

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Shahrood University of Technology for supporting this study, to the Estahban Fig Research Station, Fars Agricultural and Natural Resources Research and Training Center for providing access to the fig germplasm collection.

Funding

This work was supported by Grants received under the Master thesis fund of the Shahrood University of Technology, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rezaei.

Ethics declarations

Conflict of interest

H. Karami, M. Rezaei, A. Sarkhosh, M. Rahemi and M. Jafari declare that they have no competing interests.

Additional information

Author contribution statement

All authors equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, H., Rezaei, M., Sarkhosh, A. et al. Cold Hardiness Assessment in Seven Commercial Fig Cultivars (Ficus Carica L.). Gesunde Pflanzen 70, 195–203 (2018). https://doi.org/10.1007/s10343-018-0431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-018-0431-2

Keywords

Schlüsselwörter

Navigation