Skip to main content
Log in

Comparative anatomy of the postural mechanisms of the forelimbs of birds and mammals

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

One of the many differences between quadrupedal mammals and birds is that during standing, the forelimbs in mammals are involved in locomotion and support of the body, whereas the forelimbs of birds are involved in locomotion but not in body support. This dichotomy is reflected in the morphology and fiber types of the forelimb muscles. In mammals, the forelimb musculature forms a “pectoral sling” that suspends the trunk. Since mammals use the same muscles for postural and dynamic movements, their muscles possess a combination of slow and fast-contracting muscle fiber types that function in postural and dynamic activities. In a specific muscle, slow muscle fibers can perform postural actions via isometric contraction with minimal fatigue, whereas fast fibers can elicit dynamic, rapid, and forceful actions for locomotion. In contrast, the forelimb muscles of birds need only hold the wing folded while not in use. The muscles specialized for avian forelimb posture are comparatively small and consist entirely of slow fibers, and likely do not function in locomotion. In soaring birds, muscles with slow fibers also function isometrically and maintain the outstretched wing for extended lengths of time. Thus birds and mammals have evolved different strategies to deal with their forelimb postures and have different muscles specialized for posture.

Zusammenfassung

Einer der vielen Unterschiede zwischen vierbeinigen Säugetieren und Vögeln besteht darin, dass die Vorderbeine von Säugetieren sowohl an der Fortbewegung und als auch an der Unterstützung des Körpers beteiligt sind, wohingegen die Vorderbeine von Vögeln wohl an der Fortbewegung, jedoch nicht an der Körperunterstützung beteiligt sind. Dieser Unterschied spiegelt sich in der Struktur und den Muskelfasertypen der Vorderbeine wider. Bei Säugetieren bildet die Vorderbeinmuskulatur eine Brustschlinge, die den Rumpf aufhängt. Da Säugetiere die gleichen Muskeln für Haltung und Bewegung verwenden, besitzen ihre Muskeln eine Kombination aus langsam und schnell kontrahierenden Muskelfasertypen, die je nach Bedarf gezielt eingesetzt werden können. In einem bestimmten Muskel können langsame Muskelfasern isometrische Kontraktionen mit minimaler Ermüdung für die Haltung verantwortlich sein, während schnelle Fasern für schnelle und kraftvolle Fortbewegungen eingesetzt werden können. Im Gegensatz dazu werden die Vorderbeinmuskeln von Vögeln entweder für die gefaltete Haltung der Flügel oder zum Fliegen verwendet. Die Haltungsmuskeln der meisten Vögel sind vergleichsweise klein, bestehen ausschließlich aus langsamen Fasern und werden wahrscheinlich nicht beim Fliegen eingesetzt, aber bei hochfliegenden Vögeln funktionieren Muskeln mit langsamen Fasern isometrisch wie Haltungsmuskeln und halten die Flügel für längere Zeit ausgestreckt. In dieser Weise haben Vögel und Säugetiere für den Gebrauch ihrer Vorderbeine unterschiedliche Strategien und somit unterschiedliche Haltungsmuskeln entwickelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Gray 1968, and Homberger and Walker 2004)

Fig. 2

(modified from Evans and Christensen 1979)

Fig. 3
Fig. 4

(adapted from Meyers 1992a)

Fig. 5
Fig. 6

(b adapted from Fisher 1946 with permission)

Fig. 7

(adapted from Meyers 1993)

Fig. 8

(adapted from Meyers and Stakebake 2005)

Similar content being viewed by others

Notes

  1. Mammalian nomenclature from Nomina Anatomica Veterinaria (2017).

  2. Avian nomenclature from Vanden Berge and Zweers (1993).

  3. And is the source of a widely used slow myosin antibody (Shafiq et al. 1984).

  4. The lack of a functional explanation for its absence in this kingfisher is peculiar and should be investigated further.

  5. NAA 2nd edition does not describe any division of the M. pectoralis; thus I am proposing the nomenclature M. pectoralis superficialis and profundus for those species with the divided pectoralis muscle.

References

  • Armstrong RB (1980) Properties and distributions of the fiber types in the locomotory muscles of mammals. In: Schmidt-Nielsen K, Bolis L, Taylor CR, Stevens CE, Bentley PJ (eds) Comparative physiology: primitive mammals, vol 4. Cambridge University Press, Cambridge, pp 243–254

    Google Scholar 

  • Armstrong RB, Saubert CW, Seeherman HJ, Taylor CR (1982) Distribution of fiber types in locomotory muscles of dogs. Am J Anat 163(1):87–98

    Article  CAS  PubMed  Google Scholar 

  • Awan MZ, Goldspink G (1972) Energetics of the development and maintenance of isometric tension by mammalian fast and slow muscles. J Mechanochem Cell Motil 1:97–108

    CAS  Google Scholar 

  • Bandman E, Rosser BWC (2000) Evolutionary significance of myosin heavy chain heterogeneity in birds. Microsc Res Tech 50(6):473–491

    Article  CAS  PubMed  Google Scholar 

  • Barclay CJ (2011) Energetics of contraction. Compr Physiol 5(2):961–995

    Google Scholar 

  • Beddard FE (1898) The structure and classification of birds. Longmans, Green, and Company, London

    Book  Google Scholar 

  • Begam M, Roche JA (2018) Damaged muscle fibers might masquerade as hybrid fibers—a cautionary note on immunophenotyping mouse muscle with mouse monoclonal antibodies. Eur J Histochem 62(3):247–252

    Google Scholar 

  • Berger AJ (1956) The appendicular myology of the Sandhill Crane, with comparative remarks on the Whooping Crane. Wilson Bull 68(4):282–304

    Google Scholar 

  • Biewener AA (2003) Animal locomotion. Oxford University Press, Oxford

    Google Scholar 

  • Bonine KE, Gleeson TT, Garland T (2001) Comparative analysis of fiber-type composition in the iliofibularis muscle of phrynosomatid lizards (Squamata). J Morphol 250(3):265–280

    Article  CAS  PubMed  Google Scholar 

  • Caldow RW, Furness RW (1993) A histochemical comparison of fibre types in the M. pectoralis and M. supracoracoideus of the Great Skua Catharacta skua and the Herring Gull Larus argentatus with reference to kleptoparasitic capabilities. J Zool 229(1):91–103

    Article  Google Scholar 

  • Carrier DR, Deban SM, Fischbein T (2006) Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J Exp Biol 209(11):2224–2237

    Article  PubMed  Google Scholar 

  • Casinos A, Milne N, Jouffroy FK, Médina MF (2016) Muscle fibre types in the reduced forelimb and enlarged hindlimb of the Quokka (Setonix brachyurus, Macropodidae). Aust J Zool 64(4):277–284

    Article  Google Scholar 

  • Christensen LA, Allred LM, Goller F, Meyers RA (2017) Is sexual dimorphism in singing behavior related to syringeal muscle composition? Auk Ornithol Adv 134(3):701–720

    Google Scholar 

  • Collatos TC, Edgerton VR, Smith JL, Botterman BR (1977) Contractile properties and fiber type compositions of flexors and extensors of elbow joint in cat: implications for motor control. J Neurophysiol 40(6):1292–1300

    Article  CAS  PubMed  Google Scholar 

  • English AW (1978) Functional analysis of the shoulder girdle of cats during locomotion. J Morphol 156(2):279–292

    Article  CAS  PubMed  Google Scholar 

  • Evans HE, Christensen GC (1979) Miller’s anatomy of the dog, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Feng TP, Jung HW, Wu WY (1962) The contrasting trophic changes of the anterior and posterior latissimus dorsi of the chick following denervation. Acta Physiol Sin 25:431–441

    Google Scholar 

  • Fisher HI (1946) Adaptations and comparative anatomy of the locomotor apparatus of New World vultures. Am Midl Nat 35(3):545–727

    Article  Google Scholar 

  • Fisher HI (1957) Bony mechanism of automatic flexion and extension in the pigeon’s wing. Science 126(3271):446

    Article  Google Scholar 

  • Fisher HI, Goodman DC (1955) The myology of the Whooping Crane, Grus americana. Ill Biol Monogr 24(2):1–126

    Google Scholar 

  • Forbes WA (1882) Report on the anatomy of the petrels (Tubinares) collected during the voyage of HMS Challenger. Neill, Edinburgh

    Google Scholar 

  • Fürbringer M (1902) Zur vergleichenden Anatomie des Brustschulterapparates und der Schultermuskeln: vögel. Jenaische Zeitschr Naturw 36:289–736

    Google Scholar 

  • Gadow HF, Selenka E (1891) Vögel I Anatomischer Theil. Bronns Klassen und Ordnungen des Thierreichs, vol Bd 6. CF Winter, Leipzig

    Google Scholar 

  • Garrod AH (1876) Notes on the anatomy of Plotus anhinga. Proc Zool Soc Lond 44(1):335–345

    Article  Google Scholar 

  • George JC, Berger AJ (1966) Avian myology. Academic, New York

    Google Scholar 

  • Gill F, Donsker D (Eds) (2018) IOC World bird list (v9.1). https://doi.org/10.14344/ioc.ml.9.1

  • Goldspink G (1977) Design of muscles in relation to locomotion. In: Alexander RM, Goldspink G (eds) Mechanics and energetics of animal locomotion. Chapman and Hall, London, pp 1–22

    Google Scholar 

  • Goldspink G (1980) Locomotion and the sliding filament mechanism. In: Elder HY, Trueman ER (eds) Aspects of animal movement. Cambridge University Press, Cambridge, pp 1–25

    Google Scholar 

  • Goldspink G (1981) The use of muscles during flying, swimming, and running from the point of view of energy saving. Symp Zool Soc Lond 48:219–238

    CAS  Google Scholar 

  • Goldspink G, Larson RE, Davies RE (1970) Thermodynamic efficiency and physiological characteristics of the chick anterior latissimus dorsi muscle. Zeits Vergl Physiol 66(4):379–388

    Article  Google Scholar 

  • Goldspink G, Mills C, Schmidt-Nielsen K (1978) Electrical activity of the pectoral muscles during gliding and flapping flight in the Herring Gull (Larus argentatus). Experientia 34(7):862–865

    Article  Google Scholar 

  • Gray J (1968) Animal locomotion. Norton, New York

    Google Scholar 

  • Han Y, Wang J, Fischman DA, Biller HF, Sanders I (1999) Slow tonic muscle fibers in the thyroarytenoid muscles of human vocal folds; a possible specialization for speech. Anat Rec 256(2):146–157

    Article  CAS  PubMed  Google Scholar 

  • Hikida RS (1987) Quantitative ultrastructure of histochemically identified avian skeletal muscle fiber types. Anat Rec 218(2):128–135

    Article  CAS  PubMed  Google Scholar 

  • Hikida RS, Bock WJ (1971) Innervation of the avian tonus latissimus dorsi anterior muscle. Amer J Anat 130(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand M (1985) Walking and running. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap, Cambridge, pp 38–57

    Chapter  Google Scholar 

  • Hildebrand M, Goslow GE (2001) Analysis of vertebrate structure, 5th edn. Wiley, New York

    Google Scholar 

  • Homberger DG, Walker WF (2004) Vertebrate dissection, 9th edn. Brooks/Cole, Belmont

    Google Scholar 

  • Hudson GE, Hoff KM, Berge JV, Trivette EC (1969) A numerical study of the wing and leg muscles of lari and alcae. Ibis 111(4):459–524

    Article  Google Scholar 

  • Jenkins PA, Weijs WA (1979) The functional anatomy of the shoulder in the Virginia Opossum (Didelphis virginiana). J Zool 188(3):379–410

    Article  Google Scholar 

  • Jouffroy FK, Medina MF (2004) Comparative fiber-type composition and size in the antigravity muscles of primate limbs. In: Anapol F, German RZ, Jablonski NG (eds) Shaping primate evolution. Cambridge University Press, Cambridge, pp 134–161

    Chapter  Google Scholar 

  • Jouffroy FK, Medina MF, Renous S, Gasc JP (2003) Immunocytochemical characteristics of elbow, knee and ankle muscles of the Five-Toed Jerboa (Allactaga elater). J Anat 202(4):373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs CE, Meyers RA (2000) Anatomy and histochemistry of flight muscles in a wing propelled diving bird, the Atlantic Puffin, Fratercula arctica. J Morphol 244:109–125

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, De Remer D, Marshall DM (2005) An illustrated dictionary of aviation. McGraw-Hill, New York

    Google Scholar 

  • Kummer B (1977) Biomechanics of the mammalian skeleton: problems of static stress. Fortschr Zool 24(2–3):57–73

    CAS  PubMed  Google Scholar 

  • Kuroda N (1960a) On the pectoral muscles of birds. J Yamashina Inst Ornithol 2(14):50–59

    Article  Google Scholar 

  • Kuroda N (1960b) The muscular system of the Gadfly Petrel (Tubinares). Zool Mag 69:85–89

    Google Scholar 

  • Kuroda N (1961a) Analysis of three adaptive body forms in the steganopodes, with note on pectoral muscles. J Yamashina Inst Ornithol 3(1):54–66

    Article  Google Scholar 

  • Kuroda N (1961b) A note on the pectoral muscles of birds. Auk 78(2):261–263

    Article  Google Scholar 

  • Linari M, Caremani M, Lombardi V (2009) A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle. Proc R Soc B 277(1678):19–27

    Article  CAS  PubMed  Google Scholar 

  • Livezey BC (1992) Flightlessness in the Galápagos Cormorant [Compsohalieus (Nannopterum) harrisi]: heterochrony, giantism and specialization. Zool J Linn Soc 105(2):155–224

    Article  Google Scholar 

  • Luna VM, Daikoku E, Ono F (2015) “Slow” skeletal muscles across vertebrate species. Cell Biosci 5:62. https://doi.org/10.1186/s13578-015-0054-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier A (1983) Difference in muscle spindle structure between pigeon muscles used in aerial and terrestrial locomotion. Am J Anat 168(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Marquez J, Sweazea KL, Braun EJ (2006) Skeletal muscle fiber composition of the English Sparrow (Passer domesticus). Comp Biochem Physiol 143B(1):126–131

    Article  CAS  Google Scholar 

  • Menzel M (1999) Histochemische und morphometrische Untersuchungen der Muskulatur der Vordergliedmasse des Schafes in bezug zu ihrer Funktion: Teil 1. Beuger und Strecker des Ellbogengelenkes. Ann Anat 181(3):283–293

    Article  CAS  PubMed  Google Scholar 

  • Meyers RA (1992a) The morphological basis of folded-wing posture in the American Kestrel, Falco sparverius. Anat Rec 232(4):493–498

    Article  CAS  PubMed  Google Scholar 

  • Meyers RA (1992b) Morphology of the shoulder musculature of the American Kestrel, Falco sparverius (Aves), with implications for gliding flight. Zoomorphol 112(2):91–103

    Article  Google Scholar 

  • Meyers RA (1993) Gliding flight in the American Kestrel (Falco sparverius): an electromyographic study. J Morphol 215(3):213–224

    Article  PubMed  Google Scholar 

  • Meyers RA, Mathias E (1997) Anatomy and histochemistry of spread-wing posture in birds. 2. Gliding flight in the California Gull, Larus californicus: a paradox of fast fibers and posture. J Morphol 233:237–247

    Article  CAS  PubMed  Google Scholar 

  • Meyers RA, McFarland JC (2016) Anatomy and histochemistry of spread-wing posture in birds 4. Eagles soar with fast, not slow muscle fibres. Acta Zool 97:319–324

    Article  PubMed  Google Scholar 

  • Meyers RA, Stakebake EF (2005) Anatomy and histochemistry of spread-wing posture in birds 3. Immunohistochemistry of flight muscles and the “shoulder lock” in albatrosses. J Morphol 263:12–29

    Article  PubMed  Google Scholar 

  • Nene RV (1977) A histochemical study of cholinesterases in arm and forearm muscles of the pigeon and fowl. J Anat 123:745–749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nomina Anatomica Veterinaria (2017) International committee on veterinary gross anatomical nomenclature 6th ed. http://www.wava-amav.org/

  • Owre OT (1967) Adaptations for locomotion and feeding in the Anhinga and the Double-Crested Cormorant. Ornithol Monogr 6:1–138

    Article  Google Scholar 

  • Pennycuick CJ (1972) Soaring behavior and performance of some East African birds, observed from a motor-glider. Ibis 114:178–218

    Article  Google Scholar 

  • Pennycuick CJ (1982) The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans R Soc Lond B 300:75–106

    Article  Google Scholar 

  • Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223

    Article  CAS  PubMed  Google Scholar 

  • Putnam RW, Bennett AF (1983) Histochemical, enzymatic, and contractile properties of skeletal muscles of three anuran amphibians. Am J Physiol 244(4):R558–R567

    CAS  PubMed  Google Scholar 

  • Putnam RW, Gleeson TT, Bennett AF (1980) Histochemical determination of the fiber composition of locomotory muscles in a lizard, Dipsosaurus dorsalis. J Exp Zool 214(3):303–309

    Article  CAS  PubMed  Google Scholar 

  • Raikow RJ (1985) Locomotor system. In: King AS, McClelland J (eds) Form and function in birds, vol 3. Academic, London, pp 57–147

    Google Scholar 

  • Rosser BWC, George JC (1986) Slow muscle fibers in the pectoralis of the Turkey Vulture (Cathartes aura): an adaption for soaring flight. Zool Anz 217:252–258

    Google Scholar 

  • Rosser BWC, Waldbillig DM, Macdonald W, Bandman E (1994) Muscle fiber types in the pectoralis of the White Pelican, a soaring bird. Acta Zool 75:329–336

    Article  Google Scholar 

  • Ryan JM, Cobb MA, Hermanson JW (1992) Elbow extensor muscles of the horse: postural and dynamic implications. Cells Tissues Organs 144(1):71–79

    Article  CAS  Google Scholar 

  • Sänger AM (1997) The so-called tonic muscle fibre type in cyprinid axial muscle: their morphology and response to endurance exercise training. J Fish Biol 50(3):487–497

    Article  Google Scholar 

  • Sartore S, Mascarello F, Rowlerson A, Gorza L, Ausoni S, Vianello M, Schiaffino S (1987) Fibre types in extraocular muscles: a new myosin isoform in the fast fibres. J Muscle Res Cell Motil 8(2):161–172

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S (2010) Fibre types in skeletal muscle: a personal account. Acta Physiol 199(4):451–463

    Article  CAS  Google Scholar 

  • Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lømo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10(3):197–205

    Article  CAS  PubMed  Google Scholar 

  • Schroeder KL, Sylvain NJ, Kirkpatrick LJ, Rosser BWC (2015) Fibre types in primary ‘flight’ muscles of the African Penguin (Spheniscus demersus). Acta Zool 96:510–518

    Article  Google Scholar 

  • Shafiq SA, Shimizu T, Fischman DA (1984) Heterogeneity of type 1 skeletal muscle fibers revealed by monoclonal antibody to slow myosin. Muscle Nerve 7(5):380–387

    Article  CAS  PubMed  Google Scholar 

  • Smith JL, Edgerton VR, Betts B, Collatos TC (1977) EMG of slow and fast ankle extensors of cat during posture, locomotion, and jumping. J Neurophysiol 40(3):503–513

    Article  CAS  PubMed  Google Scholar 

  • Stephenson GM (2001) Hybrid skeletal muscle fibres: a rare or common phenomenon? Clin Exp Pharmacol Physiol 28:692–702

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A (1991) Composition of myofiber types in the pectoral girdle musculature of sheep. Anat Rec 230(3):339–346

    Article  CAS  PubMed  Google Scholar 

  • Talesara GL, Goldspink G (1978) A combined histochemical and biochemical study of myofibrillar ATPase in pectoral, leg and cardiac muscle of several species of bird. Histochem J 10(6):695–709

    Article  CAS  PubMed  Google Scholar 

  • Tokuriki M (1979) Cinematographic and electromyographic analysis of vertical standing jump in the dog. J Exp Biol 83(1):271–282

    CAS  PubMed  Google Scholar 

  • Torrella JR, Fouces V, Palomeque J, Viscor G (1993) Innervation distribution pattern, nerve ending structure, and fiber types in pigeon skeletal muscle. Anat Rec 37(2):178–186

    Article  Google Scholar 

  • Totland GK, Kryvi H (1991) Distribution patterns of muscle fibre types in major muscles of the bull (Bos taurus). Anat Embryol 184(5):441–450

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berge JC (1970) A comparative study of the appendicular musculature of the order Ciconiiformes. Amer Midl Nat 84(2):289–364

    Article  Google Scholar 

  • Vanden Berge JC, Zweers GA (1993) Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (eds) Nomina anatomica avium: handbook of avian anatomy. Nuttall Ornithol Club, Cambridge, pp 189–247

    Google Scholar 

  • Vazquez RJ (1994) The automating skeletal and muscular mechanisms of the avian wing (Aves). Zoomorphol 114(1):59–71

    Article  Google Scholar 

  • Velten BP (2016) Comparative identification and characterization of myosin heavy chain isoforms in avian skeletal muscle. PhD thesis. University of Toronto, Toronto

    Google Scholar 

  • Velten BP, Welch KC Jr (2014) Myosin heavy chain isoforms in the flight and leg muscles of hummingbirds and zebra finches. Am J Physiol 306(11):r845–r851

    CAS  Google Scholar 

  • Velten BP, Welch KC (2016) Diversity of myosin heavy chain expression in avian superficial pectoralis. Integr Comp Biol 56:E385

    Google Scholar 

  • Walker AM, Meyers RA (2019) The anatomy and histochemistry of flight hindlimb posture in birds II. The flexed hindlimb posture of perching birds. J Anat 234:668–678

    Article  PubMed  Google Scholar 

  • Welch KC Jr, Altshuler DL (2009) Fiber type homogeneity of the flight musculature in small birds. Comp Biochem Physiol 152B(4):324–331

    Article  CAS  Google Scholar 

  • Weldon WF (1883) On some points in the anatomy of Phoenicopterus and its allies. Proc Zool Soc Lond 51(1):638–652

    Article  Google Scholar 

  • Welsford IG, Meyers RA, Wilson DS, Satterlie RA, Goslow GE Jr (1991) Neuromuscular organization for “wing” control in a mollusc (Clione limacina) and a bird (Columba livia): parallels in design. Amer Zool 31(4):670–679

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Dr. Dominique G. Homberger, and Dr. Andrei Zinoviev for the invitation to participate in the 2018 International Ornithological Congress Symposium “Comparative aspects of avian morphology.” Dr. Dominique Homberger, Alexis Mathews, Chanel Ross, and two anonymous reviewers made valuable comments on the manuscript. Cindy Rehkemper and Beth Flint of the United States Fish and Wildlife Service (Hawaii) made the frigatebird specimen available. Chanel Ross performed the histochemical analysis of the frigatebird tissue. The ALD58 and F18 antibodies developed by D.A. Fischman and F.E. Stockdale, respectively, were obtained from the Developmental Studies Hybridoma Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of Biology, Iowa City, IA 52242, USA. Weber State University and its Zoology Department provided funding for the research and travel to the 2018 International Ornithological Congress in Vancouver to present the keynote lecture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron A. Meyers.

Additional information

Communicated by F. Bairlein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Topical Collection 27th International Ornithological Congress, Vancouver, Canada, 19–26 August 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyers, R.A. Comparative anatomy of the postural mechanisms of the forelimbs of birds and mammals. J Ornithol 160, 869–882 (2019). https://doi.org/10.1007/s10336-019-01678-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01678-3

Keywords

Navigation