Advertisement

Journal of Ornithology

, Volume 159, Issue 4, pp 945–954 | Cite as

Common pastures are important refuges for a declining passerine bird in a pre-alpine agricultural landscape

  • Cinja Schwarz
  • Jürgen Trautner
  • Thomas Fartmann
Original Article

Abstract

Agricultural landscapes play an important role in biodiversity conservation. The Tree Pipit (Anthus trivialis) was once a widespread breeding bird in European farmlands. Today, however, its numbers are sharply declining in most European countries. The aim of our study was to compare territory densities of Tree Pipits in common pastures and control plots in the surrounding pre-alpine agricultural landscape in southern Bavaria (Germany). Additionally, we determined the drivers of territory and home-range establishment in Tree Pipits. Habitat composition in common pastures and control plots reflected distinct differences in land-use intensity. Common pastures had larger areas of nutrient-poor habitats and higher landscape diversity compared to control plots. In line with this, we detected a clear response of Tree Pipits to differences in habitat composition. Territories were nearly exclusively found in common pastures. Within the common pastures, Tree Pipits preferred those parts that had higher landscape diversity and, additionally, at the territory scale, larger areas of groups of trees. The common pastures are important refuges for the threatened Tree Pipit in the pre-alpine agricultural landscape of the study area. In contrast to the control plots, the common pastures provided (i) sufficient suitable song posts and (ii) heterogeneous vegetation with appropriate nesting sites and a high availability of arthropod food resources. Our study corroborates findings from other studies across Europe highlighting the prime importance of traditionally used wood pastures for the Tree Pipit, and for biodiversity in general.

Keywords

Landscape heterogeneity Land-use change Farmland bird Habitat structure Traditional land use Tree Pipit (Anthus trivialis

Zusammenfassung

Allmendweiden sind wichtige Refugien für eine gefährdete Singvogelart in der prä-alpinen Agrarlandschaff.

Agrarlandschaften spielen eine wichtige Rolle für den Schutz der Biodiversität. Der Baumpieper (Anthus trivialis) war früher ein häufiger Brutvogel in europäischen Agrarlandschaften. Das Ziel unserer Studie war der Vergleich der Revierdichte des Baumpiepers in Allmendweiden und in Kontrollflächen der umgebenden prä-alpinen Agrarlandschaft in Südbayern (Deutschland). Zudem haben wir die Umweltfaktoren ermittelt, die für die Reviergründung und die Nutzung des Aktionsraums entscheidend waren. Die Habitattypenzusammensetzung in den Allmendweiden und Kontrollflächen spiegelt deutliche Unterschiede in der Landnutzungsintensität wider. Allmendweiden wiesen größere Flächen an nährstoffarmen Habitaten und eine höhere Landschaftsdiversität als die Kontrollflächen auf. Baumpieper zeigten eine deutliche Reaktion auf diese Unterschiede in der Habitattypenzusammensetzung. Reviere wurden nahezu ausschließlich in den Allmendweiden festgestellt. Innerhalb der Allmendweiden wurden die Teile präferiert, die eine hohe Landschaftsdiversität aufwiesen und auf der Revierebene zusätzlich durch eine größere Fläche an Baumgruppen gekennzeichnet waren. Allmendweiden sind wichtige Refugien für den gefährdeten Baumpieper in der prä-alpinen Agrarlandschaft des Untersuchungsgebiets. Im Gegensatz zu den Kontrollflächen wiesen Allmendweiden erstens ausreichend geeignete Singwarten und zweitens eine heterogene Vegetation mit Nistplätzen und einer hohen Verfügbarkeit an Arthropoden als Nahrung auf. Unsere Studie bestätigt die Befunde anderer Arbeiten aus Europa, die traditionell genutzten Waldweiden eine herausragende Bedeutung für den Baumpieper und für den Erhalt der Biodiversität generell zusprechen.

Notes

Acknowledgements

We are grateful to Wolfgang Kraus (Landratsamt Garmisch-Partenkirchen), Sabine Kraus and Annette Saitner (Landratsamt Bad Tölz-Wolfratshausen), Dieter Frisch (Landratsamt Ostallgäu) and Johannes Wölfl (Landratsamt Weilheim-Schongau) for providing contact data for the members of the grazing associations. Additionally, we would like to thank the members of the grazing associations for allowing access to their commons. Tereza Petrusková, Jörg Rietze, Florian Straub and an anonymous reviewer made valuable comments on an earlier version of the manuscript.

References

  1. Baillie SR, Marchant JH, Leech DI, Massimino D, Sullivan MJP, Eglington SM, Barimore C, Dadam D, Downie IS, Harris SJ, Kew AJ, Newson SE, Noble DG, Risely K, Robinson RA (2014) BirdTrends 2014: Trends in numbers, breeding success and survival for UK breeding birds. BTO Research Report. BTO, Thetford. http://www.bto.org/birdtrends. Accessed 13 June 2017
  2. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB, Marshall C, McGuire JL, Lindsey EL, Maguire KC, Mersey B, Ferrer EA (2011) Has the Earth′s sixth mass extinction already arrived? Nature 471:51–57.  https://doi.org/10.1038/nature09678 CrossRefPubMedGoogle Scholar
  3. Bartón M (2016) Package MuMIn. Available from https://www.r-project.org. Accessed 03 September 2017
  4. Bauer HG, Bezzel E, Fiedler W (2012) Das Kompendium der Vögel Mitteleuropas. Alles über Biologie, Gefährdung und Schutz: Passeriformes—Sperlingsvögel, 2nd edn. AULA-Verlag, WiebelsheimGoogle Scholar
  5. Benton TG, Bryant DM, Cole L, Crick HQR (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687.  https://doi.org/10.1046/j.1365-2664.2002.00745.x CrossRefGoogle Scholar
  6. Berg Å (2008) Habitat selection and reproductive success of ortolan buntings Emberiza hortulana on farmland in central Sweden—The importance of habitat heterogeneity. Ibis 150:565–573CrossRefGoogle Scholar
  7. BfN (Bundesamt für Naturschutz) (2017) Landschaftssteckbriefe. https://www.bfn.de. Accessed 05 October 2017
  8. Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  9. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series, 12th edn. BirdLife International, CambridgeGoogle Scholar
  10. BMU (Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit) (2007) Nationale Strategie zur biologischen Vielfalt. BMU, BerlinGoogle Scholar
  11. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, SpringerGoogle Scholar
  12. Burton NHK (2007) Influences of restock age and habitat patchiness on Tree Pipits Anthus trivialis breeding in Breckland pine plantations. Ibis 149:193–204.  https://doi.org/10.1111/j.1474-919X.2007.00737.x CrossRefGoogle Scholar
  13. De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2014) Estimating the normal background rate of species extinction. Conserv Biol 29(2):452–462.  https://doi.org/10.1111/cobi.12380 CrossRefPubMedGoogle Scholar
  14. Denerley, C. (2009) Foraging habitat use and aspects of the breeding ecology of Yellowhammers and Tree Pipits in Thetford Forest. MSc thesis, University of East AngliaGoogle Scholar
  15. Diaz M, Campos P, Pulido FJ (1997) The Spanish dehesas: a diversity in land-use and wildlife. In: Pain D, Pienkowski M (eds) Farming and birds in Europe: the common agricultural policy and its implications for bird conservation. Academic Press, London, pp 178–209Google Scholar
  16. Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc Royal Soc London B Biol Sci 268:25–29.  https://doi.org/10.1098/rspb.2000.1325 CrossRefGoogle Scholar
  17. Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196.  https://doi.org/10.1016/j.agee.2006.02.007 CrossRefGoogle Scholar
  18. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46.  https://doi.org/10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  19. Eurostat (2016) Europe in figures—Eurostat yearbook 2016. Statistical office of the European Union, Luxembourg. http://ec.europa.eu. Accessed 23 August 2017
  20. Fischer S, Flade M, Schwarz J (2005) Revierkartierung. In: Südbeck P, Andretzke H, Fischer S, Gedeon K, Schikore T, Schröder K, Sudfeldt C (eds) Methodenstandards zur Erfassung der Brutvögel Deutschlands. Dachverband Deutscher Avifaunisten, Radolfzell, pp 47–58Google Scholar
  21. Flohre A, Fischer C, Aavik T, Bengtsson J, Berendse F, Bommarco R, Ceryngier P, Clement LW, Dennis C, Eggers S, Emmerson M, Geiger F, Guerrero I, Hawro V, Inchausti P, Liira J, Morales MB, Oñate JJ, Pärt T, Weisser WW, Winqvist C, Thies C, Tscharntke T (2011) Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol Appl 21(5):1772–1781.  https://doi.org/10.1890/10-0645.1 CrossRefPubMedGoogle Scholar
  22. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkovski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patzz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574.  https://doi.org/10.1126/science.1111772 CrossRefPubMedGoogle Scholar
  23. Fünfstück H-J, von Lossow G, Schöpf H (2004) Rote Liste gefährdeter Brutvögel (Aves) Bayerns. Schriften-R Bayer Landesamt f Umweltschutz 166:19–24Google Scholar
  24. Gatter W (2000) Vogelzug und Vogelbestände in Mitteleuropa. AULA-Verlag, WiebelsheimGoogle Scholar
  25. Graham CT, Wilson MW, Gittings T, Kelly TC, Irwin S, Quinn JL, O’Halloran J (2017) Implications of afforestation for bird communities: the importance of preceding land-use type. Biodiv Conserv 26(1):3051–3071.  https://doi.org/10.1007/s10531-015-0987-4 CrossRefGoogle Scholar
  26. Gregory RD, Noble DG, Custance J (2004) The state of play of farmland birds: population trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146:1–13CrossRefGoogle Scholar
  27. Gregory RD, Vorisek P, van Strien A, Gmelig Meyling AW, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149(2):78–97.  https://doi.org/10.1111/j.1474-919X.2007.00698.x CrossRefGoogle Scholar
  28. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711.  https://doi.org/10.1111/j.1420-9101.2010.02210.x CrossRefPubMedGoogle Scholar
  29. Grüneberg C, Bauer HG, Haupt H, Hüppop O, Ryslavy T, Südbeck P (2015) The Red List of breeding birds of Germany, 5th edn. In: Deutscher Rat für Vogelschutz (ed) Berichte zum Vogelschutz, 52th edn. Landesbund für Vogelschutz (LBV), Hilpolstein, pp 19–67Google Scholar
  30. Hagemeijer WJM, Blair MJ (eds) (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, LondonGoogle Scholar
  31. Hartel T, Plieninger T (2014) European wood-pastures in transition—a social-ecological approach. Routledge, London and New YorkCrossRefGoogle Scholar
  32. Helbing F, Blaeser TP, Löffler F, Fartmann T (2014) Response of Orthoptera communities to succession in alluvial pine woodlands. J Insect Conserv 18:215–224.  https://doi.org/10.1007/s10841-014-9632-x CrossRefGoogle Scholar
  33. Henle K, Alard D, Clitherow J, Corb P, Firbank L, Kull T, McCracken D, Moritz RFA, Niemelä J, Rebane M, Wascher D, Watt A, Young J (2008) Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe: a review. Agric Ecosyst Environ 124:60–71.  https://doi.org/10.1016/j.agee.2007.09.005 CrossRefGoogle Scholar
  34. Kleijn D, Kohler F, Baldi A, Batary P, Concepcion E, Clough Y, Diaz M, Gabriel D, Holzschuh A, Knop E, Kovacs A, Marshall E, Tscharntke T, Verhulst J (2009) On the relationship between farmland biodiversity and land-use intensity in Europe. Proc R Soc Lond B Biol Sci 276:903–909.  https://doi.org/10.1098/rspb.2008.1509 CrossRefGoogle Scholar
  35. Konold W (1996) Von der Dynamik einer Kulturlandschaft. Das Allgäu als Beispiel. In: Konold W (ed) Naturlandschaft—Kulturlandschaft. Die Veränderung der Landschaften nach der Nutzbarmachung durch den Menschen. Ecomed, Landsberg, pp 121–136Google Scholar
  36. Kumstátová T, Brinke T, Tomková S, Fuchs R, Petrusek A (2004) Habitat preferences of Tree Pipit (Anthus trivialis) and Meadow Pipit (A. pratensis) at sympatric and allopatric localities. J Ornithol 145:334–342.  https://doi.org/10.1007/s10336-004-0048-3 CrossRefGoogle Scholar
  37. Lederbogen D, Rosenthal G, Scholle D, Trautner J, Zimmermann B, Kaule G (2004) Allmendweiden in Südbayern: naturschutz durch landwirtschaftliche Nutzung. Angewandte Landschaftsökologie 62:1–469Google Scholar
  38. Löffler F, Fartmann T (2017) Effects of landscape and habitat quality on Orthoptera assemblages in pre-alpine calcareous grasslands. Agric Ecosyst Environ 248:71–81.  https://doi.org/10.1016/j.agee.2017.07.029 CrossRefGoogle Scholar
  39. Loske KH (1985) Anthus trivialis (Linnaeus 1758). In: von Glutz Blotzheim UN (ed) Handbuch der Vögel Mitteleuropas. Vol. 10. Passeriformes.—(Part 1) 2. Motacillidae—Prunellidae. AULA-Verlag, Wiebelsheim, pp 576–610Google Scholar
  40. Loske KH (1987a) Habitatwahl des Baumpiepers (Anthus trivialis). J Ornithol 128(1):33–47.  https://doi.org/10.1007/BF01644789 CrossRefGoogle Scholar
  41. Loske KH (1987b) On the ethology of the Tree Pipit (Anthus trivialis). Ecol Birds 9(1):1–30Google Scholar
  42. Matzdorf B, Reutter M, Hübner C (2010) Gutachten-Vorstudie—Bewertung der Ökosystemdienstleistungen von HNV-Grünland (High Nature Value Grassland). Unpublished reportGoogle Scholar
  43. Meury R (1989) Siedlungsdichte und Raumnutzung des Baumpiepers Anthus trivialis im inselartig verteilten Habitat des aargauischen Reusstals. Ornith Beob 86:105–113Google Scholar
  44. Moga C, Hartel T, Öllerer K (2009) Ancient oak wood-pasture as a habitat for the endangered Tree Pipit Anthus trivialis. Biologia 64(5):1–5.  https://doi.org/10.2478/s11756-009-0167-7 CrossRefGoogle Scholar
  45. Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600.  https://doi.org/10.1111/j.1474-919X.2004.00375.x CrossRefGoogle Scholar
  46. Newton I (2017) Farming and birds. William Collins, LondonGoogle Scholar
  47. O’Neill RV, Krummel JR, Gardner RH, Sugihara G, Jackson B, DeAngelis DL, Milne BT, Turner MG, Zygmunt B, Christensen SW, Dale VH, Graham RL (1988) Indices of landscape pattern. Landsc Ecol 1(3):153–162.  https://doi.org/10.1007/BF00162741 CrossRefGoogle Scholar
  48. Pätzold R (1990) Der Baumpieper, 1st edn. Ziemsen Verlag, WittenbergGoogle Scholar
  49. Pavel V (2004) The impact of grazing animals on nesting success of grassland passerines in farmland and natural habitats: a field experiment. Folia Zool 53(2):171–178Google Scholar
  50. Petrusková T, Osiejuk TS, Linhart P, Petrusek A (2008) Structure and complexity of perched and flight songs of the Tree Pipit (Anthus trivialis). Ann Zool Fenn 45(2):135–148.  https://doi.org/10.5735/086.045.0205 CrossRefGoogle Scholar
  51. Pille A, Scholle D, Hofmann C (2002) Institutionelle Voraussetzungen der Allmendweide. In: der Berichte ANL (ed) Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), 26th edn. Bayerische Akademie für Naturschutz und Landschaftspflege (ANL), Laufen, pp 30–36Google Scholar
  52. Pinto-Correia T, Mascarenhas J (1999) Contribution to the extensification/intensification debate: new trends in the Portuguese montado. Landsc Urban Plan 46:125–131.  https://doi.org/10.1016/S0169-2046(99)00036-5 CrossRefGoogle Scholar
  53. Riecken U, Finck P, Raths U, Schröder E, Ssymank A (2006) Rote Liste der gefährdeten Biotoptypen in Deutschland, 2nd edn. Naturschutz und Biologische Vielfalt, vol 34, Bundesamt für Naturschutz, Bonn, pp 1–318.  https://doi.org/10.1002/9783527678471.hbnl2003006
  54. Ringler A, Grabherr G (2017) Entwicklungstendenzen des Grünlandes in den Alpen. Nat Landsch 9(10):424–431Google Scholar
  55. Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461(7263):472–475.  https://doi.org/10.1038/461472a CrossRefPubMedGoogle Scholar
  56. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774.  https://doi.org/10.1126/science.287.5459.1770 CrossRefPubMedGoogle Scholar
  57. Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105.  https://doi.org/10.1016/j.biocon.2006.02.008 CrossRefGoogle Scholar
  58. Streitberger M, Hermann G, Kraus W, Fartmann T (2012) Modern forest management and the decline of the Woodland Brown (Lopinga achine) in Central Europe. For Ecol Manag 269:239–248.  https://doi.org/10.1016/j.foreco.2011.12.028 CrossRefGoogle Scholar
  59. Succow M, Jeschke L (1990) Moore in der Landschaft. Urania-Verlag, LeipzigGoogle Scholar
  60. R Development Core Team (2017) R: a language and environment for statistical computing. http://www.r-project.org. Accessed 04 July 2017
  61. van Klink R, van der Plas F, van Noordwijk CGE, WallisDeVries MF, Olff H (2015) Effects of large herbivores on grassland arthropod diversity. Biol Rev 90:347–366.  https://doi.org/10.1111/brv.12113 CrossRefPubMedGoogle Scholar
  62. Vickery PD, Tallowin JR, Feber RE, Asteraki EJ, Atkinson PW, Fuller RJ, Brown VK (2001) The management of lowland neutral grasslands in Britain: effects of agricultural practices on birds and their food resources. J Appl Ecol 38:647–664.  https://doi.org/10.1046/j.1365-2664.2001.00626.x CrossRefGoogle Scholar
  63. Wilson JD, Evans AD, Grice PV (2009) Bird conservation and agriculture. Cambridge University Press, Cambridge.  https://doi.org/10.1086/652355 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  1. 1.Department of Biodiversity and Landscape Ecology, Faculty of Biology and ChemistryOsnabrück UniversityOsnabrückGermany
  2. 2.Working Group for Animal Ecology and PlanningFilderstadtGermany
  3. 3.Institute of Biodiversity and Landscape Ecology (IBL)MünsterGermany

Personalised recommendations