Skip to main content

Advertisement

Log in

Methods for prevention and constraint of antimicrobial resistance: a review

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

A variety of multidrug-resistant bacteria is blamed for severe infections worldwide. The emergence of antimicrobial resistance constitutes a serious problem for healthcare systems around the world. Here we review techniques for the prevention and constraint of antimicrobial resistance, the risk factors, and the ways by which antimicrobial resistance spreads. We discuss strategies for containment of widespread infections caused by antibacterial drug-resistant bacteria, including internationally recognized guidelines of antibiotic stewardship, educational programs, and behavioral changes. Recent discoveries of novel therapeutic drugs that can be used against antimicrobial resistance are very promising. For instance, antisense oligonucleotides are novel drugs that can be used successfully against resistant bacteria. This technology has many advantages in the development of antibacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiello AE, Larson E (2003) Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect Dis 3:501–506

    Google Scholar 

  • Allcock S, Young EH, Holmes M, Gurdasani D, Dougan G, Sandhu MS, Solomon L, Torok ME (2017) Antimicrobial resistance in human populations: challenges and opportunities. Glob Health Epidemiol Genom 2:e4

    CAS  Google Scholar 

  • Ande O, Oladepo O, Brieger WR (2004) Comparison of knowledge on diarrheal disease management between two types of community-based distributors in Oyo State, Nigeria. Health Educ Res 19:110–113

    Google Scholar 

  • Ball P, Baquero F, Cars O, File T, Garau J, Klugman K, Low DE, Rubinstein E, Wise R, Consensus Group on R, Prescribing in Respiratory Tract I (2002) Antibiotic therapy of community respiratory tract infections: strategies for optimal outcomes and minimized resistance emergence. J Antimicrob Chemother 49:31–40

    CAS  Google Scholar 

  • Barlam TF, Cosgrove SE, Abbo LM, Macdougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Implementing an antibiotic stewardship program: guidelines by the infectious diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62:e51-77

    Google Scholar 

  • Bassetti M, Poulakou G, Ruppe E, Bouza E, van Hal SJ, Brink A (2017) Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med 43:1464–1475

    CAS  Google Scholar 

  • Bavestrello L, Cabello A, Casanova D (2002) Impact of regulatory measures in the trends of community consumption of antibiotics in Chile. Rev Med Chil 130:1265–1272

    Google Scholar 

  • Bennadi D (2013) Self-medication: a current challenge. J Basic Clin Pharm 5:19–23

    Google Scholar 

  • Bhushan B, Singh BP, Saini K, Kumari M, Tomar SK, Mishra V (2019) Role of microbes, metabolites and effector compounds in host–microbiota interaction: a pharmacological outlook. Environ Chem Lett 17:1801–1820

    CAS  Google Scholar 

  • Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51

    CAS  Google Scholar 

  • Bloom DE, Black S, Rappuoli R (2017) Emerging infectious diseases: a proactive approach. Proc Natl Acad Sci USA 114:4055–4059

    CAS  Google Scholar 

  • Carattoli A (2008) Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect 14(Suppl 1):117–123

    Google Scholar 

  • Dellit TH, Owens RC, Mcgowan JE Jr, Gerding DN, Weinstein RA, Burke JP, Huskins WC, Paterson DL, Fishman NO, Carpenter CF, Brennan PJ, Billeter M, Hooton TM, Infectious Diseases Society of A, Society for Healthcare Epidemiology of A (2007) Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis 44:159–177

    Google Scholar 

  • Depoorter P, Persoons D, Uyttendaele M, Butaye P, de Zutter L, Dierick K, Herman L, Imberechts H, van Huffel X, Dewulf J (2012) Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium. Int J Food Microbiol 159:30–38

    CAS  Google Scholar 

  • Dik JW, Poelman R, Friedrich AW, Panday PN, Lo-Ten-foe JR, van Assen S, Van Gemert-Pijnen JE, Niesters HG, Hendrix R, Sinha B (2016) An integrated stewardship model: antimicrobial, infection prevention and diagnostic (AID). Future Microbiol 11:93–102

    CAS  Google Scholar 

  • Drlica K (2003) The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 52:11–17

    CAS  Google Scholar 

  • Erbay A, Colpan A, Bodur H, Cevik MA, Samore MH, Ergonul O (2003) Evaluation of antibiotic use in a hospital with an antibiotic restriction policy. Int J Antimicrob Agents 21:308–312

    CAS  Google Scholar 

  • Essack SY (2006) Strategies for prevention and containment of antibiotic resistance. S Afr Fam Pract 48(1):50

    Google Scholar 

  • Fairchok MP, Ashton WS, Fischer GW (1996) Carriage of penicillin-resistant pneumococci in a military population in Washington, DC: risk factors and correlation with clinical isolates. Clin Infect Dis 22:966–972

    CAS  Google Scholar 

  • Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, Artigas A, Schorr C, Levy MM (2014) Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 42:1749–1755

    CAS  Google Scholar 

  • Fishman N (2006) Antimicrobial stewardship. Am J Med 119:S53-61 (discussion S62–70)

    Google Scholar 

  • Founou LL, Founou RC, Essack SY (2016) Antibiotic resistance in the food chain: a developing country-perspective. Front Microbiol 7:1881

    Google Scholar 

  • Garau J, Nicolau DP, Wullt B, Bassetti M (2014) Antibiotic stewardship challenges in the management of community-acquired infections for prevention of escalating antibiotic resistance. J Glob Antimicrob Resist 2:245–253

    Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis. W. H. Freeman, New York

    Google Scholar 

  • Harbarth S, Gundlapalli AV, Stockdale W, Samore MH (2003) Shortage of penicillin G: impact on antibiotic prescribing at a US tertiary care centre. Int J Antimicrob Agents 21:484–487

    CAS  Google Scholar 

  • Hayes JD, Wolf CR (1990) Molecular mechanisms of drug resistance. Biochem J 272:281–295

    CAS  Google Scholar 

  • Hermsen R, Deris JB, Hwa T (2012) On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci USA 109:10775–10780

    CAS  Google Scholar 

  • Hudspeth MK, Smith TC, Barrozo CP, Hawksworth AW, Ryan MA, Gray GC, Streptococcus Pneumoniae Surveillance G (2001) National Department of Defense Surveillance for Invasive Streptococcus pneumoniae: antibiotic resistance, serotype distribution, and arbitrarily primed polymerase chain reaction analyses. J Infect Dis 184:591–596

    CAS  Google Scholar 

  • Hughes D, Andersson DI (2015) Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat Rev Genet 16:459

    CAS  Google Scholar 

  • Jampilek J (2018) Design and discovery of new antibacterial agents: advances, perspectives, challenges. Curr Med Chem 25:4972–5006

    CAS  Google Scholar 

  • Kagan LJ, Aiello AE, Larson E (2002) The role of the home environment in the transmission of infectious diseases. J Community Health 27:247–267

    Google Scholar 

  • Kaku N, Yanagihara K, Morinaga Y, Yamada K, Harada Y, Migiyama Y, Nagaoka K, Matsuda J, Uno N, Hasegawa H, Miyazaki T, Izumikawa K, Kakeya H, Yamamoto Y, Kohno S (2014) Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia. J Infect Chemother 20:350–355

    Google Scholar 

  • Khan S, Beattie TK, Knapp CW (2019) Rapid selection of antimicrobial-resistant bacteria in complex water systems by chlorine and pipe materials. Environ Chem Lett 17:1367–1373

    CAS  Google Scholar 

  • Kubin CJ (2002) Antimicrobial control programs. Semin Perinatol 26:379–386

    Google Scholar 

  • Laing R, Hogerzeil H, Ross-Degnan D (2001) Ten recommendations to improve use of medicines in developing countries. Health Policy Plan 16:13–20

    CAS  Google Scholar 

  • le Grand A, Hogerzeil HV, Haaijer-Ruskamp FM (1999) Intervention research in rational use of drugs: a review. Health Policy Plan 14:89–102

    Google Scholar 

  • Levy S (2014) Reduced antibiotic use in livestock: how Denmark tackled resistance. Environ Health Perspect 122:A160–A165

    Google Scholar 

  • Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    CAS  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387

    CAS  Google Scholar 

  • Lim VK, Cheong YM (1992) Bacteriology turnaround time in seven Malaysian general hospitals. Malays J Pathol 14:41–43

    CAS  Google Scholar 

  • Mabadeje AF, Akintonwa AA, Ashorobi RB (1991) The value and effects of implementing an essential drugs list in the Lagos University Teaching Hospital. Clin Pharmacol Ther 50:121–124

    CAS  Google Scholar 

  • Mayrhofer S, Paulsen P, Smulders FJ, Hilbert F (2006) Antimicrobial resistance in commensal Escherichia coli isolated from muscle foods as related to the veterinary use of antimicrobial agents in food-producing animals in Austria. Microb Drug Resist 12:278–283

    CAS  Google Scholar 

  • McMahon MA, Blair IS, Moore JE, McDowell DA (2007) The rate of horizontal transmission of antibiotic resistance plasmids is increased in food preservation-stressed bacteria. J Appl Microbiol 103:1883–1888

    CAS  Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(Suppl 3):S93–S106

    CAS  Google Scholar 

  • McMahon MA, Xu J, Moore JE, Blair IS, McDowell DA (2007) Environmental stress and antibiotic resistance in food-related pathogens. Appl Environ Microbiol 73:211–217

    CAS  Google Scholar 

  • Medeiros AA (1997) Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis 24(Suppl 1):S19-45

    CAS  Google Scholar 

  • Mendelson M, Matsoso MP (2014) A global call for action to combat antimicrobial resistance: can we get it right this time? S Afr Med J 104:478–479

    Google Scholar 

  • Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015

    Article  Google Scholar 

  • Murphy GS Jr, Echeverria P, Jackson LR, Arness MK, Lebron C, Pitarangsi C (1996) Ciprofloxacin- and azithromycin-resistant Campylobacter causing traveler’s diarrhea in U.S. troops deployed to Thailand in 1994. Clin Infect Dis 22:868–869

    Google Scholar 

  • Mutanda LN, Omari AM, Wamola IA (1989) Adaptation of a method of measuring zone diameters of bacterial growth inhibition by antibiotics to suit developing countries. East Afr Med J 66:441–447

    CAS  Google Scholar 

  • O’Brien TF, Stelling JM (1996) WHONET: removing obstacles to the full use of information about antimicrobial resistance. Diagn Microbiol Infect Dis 25:162–168

    CAS  Google Scholar 

  • Okeke IN, Lamikanra A (2003) Export of antimicrobial drugs by West African travelers. J Travel Med 10:133–135

    Google Scholar 

  • Okeke IN, Lamikanra A, Edelman R (1999) Socioeconomic and behavioral factors leading to acquired bacterial resistance to antibiotics in developing countries. Emerg Infect Dis 5:18–27

    CAS  Google Scholar 

  • Okeke IN, Klugman KP, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Laxminarayan R (2005) Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis 5:568–580

    Google Scholar 

  • Padungtod P, Kadohira M, Hill G (2008) Livestock production and foodborne diseases from food animals in Thailand. J Vet Med Sci 70:873–879

    Google Scholar 

  • Parimi N, Pinto Pereira LM, Prabhakar P (2002) The general public’s perceptions and use of antimicrobials in Trinidad and Tobago. Rev Panam Salud Publica 12:11–18

    Google Scholar 

  • Paskovaty A, Pflomm JM, Myke N, Seo SK (2005) A multidisciplinary approach to antimicrobial stewardship: evolution into the 21st century. Int J Antimicrob Agents 25:1–10

    CAS  Google Scholar 

  • Paterson DL (2004) “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis 38(Suppl 4):S341–S345

    CAS  Google Scholar 

  • Pena C, Pujol M, Ricart A, Ardanuy C, Ayats J, Linares J, Garrigosa F, Ariza J, Gudiol F (1997) Risk factors for faecal carriage of Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL-KP) in the intensive care unit. J Hosp Infect 35:9–16

    CAS  Google Scholar 

  • Penchovsky R, Stoilova CC (2013) Riboswitch-based antibacterial drug discovery using high-throughput screening methods. Expert Opin Drug Discov 8:65–82

    CAS  Google Scholar 

  • Penchovsky R, Traykovska M (2015) Designing drugs that overcome antibacterial resistance: where do we stand and what should we do? Expert Opin Drug Discov 10:631–650

    CAS  Google Scholar 

  • Perez A, Dennis RJ, Rodriguez B, Castro AY, Delgado V, Lozano JM, Castro MC (2003) An interrupted time series analysis of parenteral antibiotic use in Colombia. J Clin Epidemiol 56:1013–1020

    Google Scholar 

  • Phillips-Howard PA, Wannemuehler KA, ter Kuile FO, Hawley WA, Kolczak MS, Odhacha A, Vulule JM, Nahlen BL (2003) Diagnostic and prescribing practices in peripheral health facilities in rural western Kenya. Am J Trop Med Hyg 68:44–49

    Google Scholar 

  • Piddock LJ (2006) Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402

    CAS  Google Scholar 

  • Ribeiro M, Simões M (2019) Advances in the antimicrobial and therapeutic potential of siderophores. Environ Chem Lett 17:1485–1494

    CAS  Google Scholar 

  • Rodgers K, McLellan I, Peshkur T, Williams R, Tonner R, Hursthouse AS, Knapp CW, Henriquez FL (2019) Can the legacy of industrial pollution influence antimicrobial resistance in estuarine sediments? Environ Chem Lett 17:595–607

    CAS  Google Scholar 

  • Rusu A, Hancu G, Uivaroşi V (2015) Fluoroquinolone pollution of food, water and soil, and bacterial resistance. Environ Chem Lett 13:21–36

    CAS  Google Scholar 

  • Rydberg J, Cederberg A (1986) Intrafamilial spreading of Escherichia coli resistant to trimethoprim. Scand J Infect Dis 18:457–460

    CAS  Google Scholar 

  • Saez-Llorens X, Castrejon de Wong MM, Castano E, De Suman O, De Moros D, De Atencio I (2000) Impact of an antibiotic restriction policy on hospital expenditures and bacterial susceptibilities: a lesson from a pediatric institution in a developing country. Pediatr Infect Dis J 19:200–206

    CAS  Google Scholar 

  • Selgelid MJ (2007) Ethics and drug resistance. Bioethics 21:218–229

    Google Scholar 

  • Septimus EJ (2018) Antimicrobial resistance: an antimicrobial/diagnostic stewardship and infection prevention approach. Med Clin North Am 102:819–829

    Google Scholar 

  • Shapiro RL, Kumar L, Phillips-Howard P, Wells JG, Adcock P, Brooks J, Ackers ML, Ochieng JB, Mintz E, Wahlquist S, Waiyaki P, Slutsker L (2001) Antimicrobial-resistant bacterial diarrhea in rural western Kenya. J Infect Dis 183:1701–1704

    CAS  Google Scholar 

  • Silbergeld EK, Graham J, Price LB (2008) Industrial food animal production, antimicrobial resistance, and human health. Annu Rev Public Health 29:151–169

    Google Scholar 

  • Singh M, Chaudhry MA, Yadava JN, Sanyal SC (1992) The spectrum of antibiotic resistance in human and veterinary isolates of Escherichia coli collected from 1984–86 in northern India. J Antimicrob Chemother 29:159–168

    CAS  Google Scholar 

  • Srinivasan V, Nam HM, Sawant AA, Headrick SI, Nguyen LT, Oliver SP (2008) Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. Microb Ecol 55:184–193

    CAS  Google Scholar 

  • Stine OC, Johnson JA, Keefer-Norris A, Perry KL, Tigno J, Qaiyumi S, Stine MS, Morris JG Jr (2007) Widespread distribution of tetracycline resistance genes in a confined animal feeding facility. Int J Antimicrob Agents 29:348–352

    CAS  Google Scholar 

  • Shende S, Gade A, Rai M (2017) Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ Chem Lett 15:7

    Google Scholar 

  • Tagliabue A, Rappuoli R (2018) Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol 9:1068

    Google Scholar 

  • Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. Am J Med 119:S3-10 (discussion S62–70)

    CAS  Google Scholar 

  • Thampi N, Showler A, Burry L, Bai AD, Steinberg M, Ricciuto DR, Bell CM, Morris AM (2015) Multicenter study of health care cost of patients admitted to hospital with Staphylococcus aureus bacteremia: impact of length of stay and intensity of care. Am J Infect Control 43:739–744

    Google Scholar 

  • Valsamatzi-Panagiotou A, Popova KB, Penchovsky R (2021) Strategies for prevention and containment of antimicrobial resistance. Sustain Agric Rev 49:31

    Google Scholar 

  • Verraes C, van Boxstael S, van Meervenne E, van Coillie E, Butaye P, Catry B, de Schaetzen MA, van Huffel X, Imberechts H, Dierick K, Daube G, Saegerman C, de Block J, Dewulf J, Herman L (2013) Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health 10:2643–2669

    Google Scholar 

  • Wayland C (2004) The failure of pharmaceuticals and the power of plants: medicinal discourse as a critique of modernity in the Amazon. Soc Sci Med 58:2409–2419

    Google Scholar 

  • Weber JT, Courvalin P (2005) An emptying quiver: antimicrobial drugs and resistance. Emerg Infect Dis 11:791–793

    CAS  Google Scholar 

  • WHO (2001a) Essential drugs monitor antimicrobila resistance: a global threat (editorial). World Health Organization, Geneva

    Google Scholar 

  • WHO (2001b) WHO global strategy for containment of antimicrobial resistance

  • Woolhouse M, Waugh C, Perry MR, Nair H (2016) Global disease burden due to antibiotic resistance—state of the evidence. J Glob Health 6:010306

    Google Scholar 

  • Wright GD (2011) Molecular mechanisms of antibiotic resistance. Chem Commun (Camb) 47:4055–4061

    CAS  Google Scholar 

  • Zirakzadeh A, Patel R (2005) Epidemiology and mechanisms of glycopeptide resistance in enterococci. Curr Opin Infect Dis 18:507–512

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Bulgarian National Science Fund under Grant No. DN13/14/20.12.2017 and partially by the operational programme “Science and Education for Smart Growth” 2014-2020, co-funded by the European union through the European structural and investment funds: Project BG05M2OP001-1.002-0019 “Clean technologies for sustainable environment—water, waste, energy for circular economy” (Clean&Circle CoC) by funding of the experts labor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Penchovsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valsamatzi-Panagiotou, A., Popova, K.B. & Penchovsky, R. Methods for prevention and constraint of antimicrobial resistance: a review. Environ Chem Lett 19, 2005–2012 (2021). https://doi.org/10.1007/s10311-021-01206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-021-01206-x

Keywords

Navigation