Skip to main content

Advertisement

Log in

Faster methane production after sequential extrusion and enzymatic hydrolysis of vine trimming shoots

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Organic waste can provide energy in the form of biogas, but processes should be improved. There is little knowledge on sequential pretreatment of extrusion and enzymatic hydrolysis for the production of biogas from biomass. Here, sequential extrusion and enzymatic hydrolysis were tested as pretreatment for methane production from vine trimming shoots. Results show that methane production by anaerobic digestion from extruded and hydrolyzed material, of 144.3 L CH4/kg volatile solids after 13 days, was faster than from untreated material, of 139.1 L CH4/kg volatile solids after 32 days. The final volume produced from extruded and hydrolyzed material exceeded in a 40% the production from untreated material. Thus, the sequence of extrusion and hydrolysis as pretreatment was positive for methane production from vine trimming shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Al Seadi T, Rutz D, Prassl H et al (2008) Biogas handbook. University of Southern, Esbjerg, Denmark

    Google Scholar 

  • Chen X, Zhang Y, Gu Y, Liu Z, Shen Z, Chu H, Zhou X (2014) Enhancing methane production from rice straw by extrusion pretreatment. Appl Energy 122:34–41. doi:10.1016/j.apenergy.2014.01.076

    Article  CAS  Google Scholar 

  • Clark J, Deswarte F (2015) The biorefinery concept: an integrated approach. In: Clark J, Deswarte F (eds) Introduction to chemicals from biomass, 2nd edn. Wiley, Chichester, pp 1–29

    Google Scholar 

  • Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB (2011) Valorization of winery waste vs. the costs of not recycling. Waste Manag 31:2327–2335. doi:10.1016/j.wasman.2011.06.001

    Article  CAS  Google Scholar 

  • Gu Y, Zhang Y, Zhou X (2015) Effect of Ca(OH)2 pretreatment on extruded rice straw anaerobic digestion. Bioresour Technol 196:116–122. doi:10.1016/j.biortech.2015.07.004

    Article  CAS  Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. doi:10.1016/j.biortech.2008.05.027

    Article  CAS  Google Scholar 

  • Hjorth M, Gränitz K, Adamsen APS, Moller HB (2011) Extrusion as a pretreatment to increase biogas production. Bioresour Technol 102:4989–4994. doi:10.1016/j.biortech.2010.11.128

    Article  CAS  Google Scholar 

  • Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45:431–440. doi:10.1016/j.procbio.2009.11.018

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sustain Energy Rev 45:540–555. doi:10.1016/j.rser.2015.02.032

    Article  CAS  Google Scholar 

  • Mekala NK, Potumarthi R, Baadhe RR, Gupta VK (2014) Current bioenergy researches strengths and future challenges. In: Gupta VG, Tuohy M, Kubicek CP, Saddler J, Feng Xu (eds) Bioenergy research: advances and applications. Elsevier, Amsterdam, pp 1–21

    Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Guo XM, Latrille E, Trably E, Steyer JP, Carrere H (2012) Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ Sci Technol 46:12217–12225. doi:10.1021/es303132t

    Article  CAS  Google Scholar 

  • Panepinto D, Genon G (2016) Analysis of the extrusion as a pretreatment for the anaerobic digestion process. Ind Crops Prod 83:206–212. doi:10.1016/j.indcrop.2015.12.044

    Article  CAS  Google Scholar 

  • Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2016) Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Bioresour Technol 221:130–138. doi:10.1016/j.biortech.2016.09.013

    Article  Google Scholar 

  • Pérez-Rodríguez N, García-Bernet D, Domínguez JM (2017) Extrusion and enzymatic hydrolysis as pretreatments on corn cob for biogas production. Renew Energy 107:597–603. doi:10.1016/j.renene.2017.02.030

    Article  Google Scholar 

  • Santiago R, Barros-Rios J, Malvar RA (2013) Impact of cell wall composition on maize resistance to pests and diseases. Int J Mol Sci 14:6960–6980. doi:10.3390/ijms14046960

    Article  CAS  Google Scholar 

  • Schroyen M, Vervaeren H, Van Hulle SWH, Raes K (2014) Impact of enzymatic pretreatment on corn stover degradation and biogas production. Bioresour Technol 173:59–66. doi:10.1016/j.biortech.2014.09.030

    Article  CAS  Google Scholar 

  • Van Dyk JS, Pletschke BI (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes: factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. doi:10.1016/j.biotechadv.2012.03.002

    Article  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  • Wahid R, Hjorth M, Kristensen S, Møller HB (2015) Extrusion as pretreatment for boosting methane production: effect of screw configurations. Energy Fuels 29:4030–4037. doi:10.1021/acs.energyfuels.5b00191

    Article  CAS  Google Scholar 

  • Ximenes E, Kim Y, Ladisch MR (2013) Biological conversion of plants to fuels and chemicals and the effects of inhibitors. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 39–60

    Chapter  Google Scholar 

  • Zheng J, Rehmann L (2014) Extrusion pretreatment of lignocellulosic biomass: a review. Int J Mol Sci 15:18967–18984. doi:10.3390/ijms151018967

    Article  CAS  Google Scholar 

  • Ziemiński K, Romanowska I, Kowalska M (2012) Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag 32:1131–1137. doi:10.1016/j.wasman.2012.01.016

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank financial support from Spanish Ministry of Education, Culture and Sports for Pérez-Rodríguez‘s FPU PhD grant and FPU stay fellowship. Thanks to INRA (French National Institute of Agronomic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pérez-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rodríguez, N., García-Bernet, D. & Domínguez, J.M. Faster methane production after sequential extrusion and enzymatic hydrolysis of vine trimming shoots. Environ Chem Lett 16, 295–299 (2018). https://doi.org/10.1007/s10311-017-0668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0668-5

Keywords

Navigation