Skip to main content
Log in

Nanomaterial toxicity for plants

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nanomaterials occur widely in ecosystems as the result of both natural processes and human activities. Reports suggest that altered growth patterns in plants result from interactions of nanomaterials and plants. Plant physiological barriers provide some resistance against nanomaterial toxicity. Plants regulate its cell machinery to overcome nanomaterial-mediated stress. Engineered nanomaterials modify plant properties according to there size and surface properties. This article reviews interactions of plants with engineered nanomaterials, their uptake, translocation, and toxicity. The detoxification mechanisms of nanomaterials are described at physiological, proteomic, transcriptomic, and metabolomics levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E et al (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32(5):577–584

    Article  CAS  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827

    Article  CAS  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  Google Scholar 

  • Bali R, Siegele R, Harris AT (2010) Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12(8):3087–3095

    Article  CAS  Google Scholar 

  • Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857

    Article  CAS  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  • Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222

    Article  CAS  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P et al (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650

    Article  CAS  Google Scholar 

  • Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7(5):e34783

    Article  CAS  Google Scholar 

  • Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147

    Article  CAS  Google Scholar 

  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G et al (2010) Differential uptake of carbon nanoparticles by plant and Mammalian cells. Small 6(5):612–617

    Article  CAS  Google Scholar 

  • Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869

    Article  CAS  Google Scholar 

  • Cobbett CSMM, Howden R (1998) Rolls B The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thalianais deficient in γ-glutamylcysteine synthetase. Plant J 16(1):73–78

    Article  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  CAS  Google Scholar 

  • Cs C (2000) Phytochelatin biosynthesis and function in heavymetal detoxification. Curr Opin Plant Biol 3(3):211–216

    Article  Google Scholar 

  • Dev A, Srivastava AK, Karmakar S (2017) Uptake and toxicity of nanomaterials in plants. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 5 sustainable agriculture reviews, vol 26. Springer, Cham

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145

    Article  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090

    Article  CAS  Google Scholar 

  • Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16(4):489–495

    Article  CAS  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiol Plant 132(4):491–502

    Article  CAS  Google Scholar 

  • Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1(4):196–200

    Article  Google Scholar 

  • Fahn A (1982) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  CAS  Google Scholar 

  • Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant, Cell Environ 33(5):702–716

    CAS  Google Scholar 

  • Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant, Cell Environ 32(10):1357–1365

    Article  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838

    Article  CAS  Google Scholar 

  • Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P et al (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119

    Article  CAS  Google Scholar 

  • Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B et al (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci: CMLS 68(12):2067–2079

    Article  CAS  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO(2) on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652

    CAS  Google Scholar 

  • Grill ELS, Winnacker EL (1989) Zenk MH Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86(18):6838–6842

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  CAS  Google Scholar 

  • Harris AT, Bali R (2007) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695

    Article  CAS  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5(3):128–133

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(1–3):346–352

    Article  CAS  Google Scholar 

  • Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5(3):278–284

    Article  CAS  Google Scholar 

  • Hopkins FGHLJ (1929) On glutathione: a reinvestigation. J Biol Chem 84(1):269–320

    CAS  Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):229

    Article  CAS  Google Scholar 

  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15(6):1676

    Article  Google Scholar 

  • Jozef S (2012) Endocytosis in plants. Springer, Berlin

    Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781

    Article  CAS  Google Scholar 

  • Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17

    Article  CAS  Google Scholar 

  • Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155(1–3):55–61

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302

    Article  CAS  Google Scholar 

  • Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62

    Article  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B et al (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057

    Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L et al (2014) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26

    Article  CAS  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  CAS  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921

    Article  CAS  Google Scholar 

  • Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675

    Article  CAS  Google Scholar 

  • Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H et al (2013a) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7(11):9693–9703

    Article  CAS  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013b) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20(2):848–854

    Article  CAS  Google Scholar 

  • Lee S, Chung H, Kim S, Lee I (2013c) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  • Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C et al (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47(13):7490–7498

    Article  CAS  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR et al (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320

    Article  CAS  Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693

    Article  CAS  Google Scholar 

  • Lü P, Cao J, He S, Liu J, Li H, Cheng G et al (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57(3):196–202

    Article  CAS  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013a) Physiological and molecular response of arabidopsis thaliana(L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    Article  CAS  Google Scholar 

  • Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849

    Article  CAS  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nat Educ Knowl 4:1

    Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239

    Article  CAS  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Schober Y, Rompp A, Ghassempour A et al (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MN (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44(1):25–37

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230

    Article  CAS  Google Scholar 

  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N et al (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120(Pt 21):3804–3819

    Article  CAS  Google Scholar 

  • Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech. doi:10.5772/34557

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138

    Article  CAS  Google Scholar 

  • Mura SSG, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):127–140

    Google Scholar 

  • Mushtaq YK (2011) Effect of nanoscale Fe(3)O(4), TiO(2) and carbon particles on cucumber seed germination. J Environ Sci Health, Part A 46(14):1732–1735

    Article  CAS  Google Scholar 

  • Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118

    Article  CAS  Google Scholar 

  • Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ et al (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  Google Scholar 

  • Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF (2009) Interactions between carbon black nanoparticles and the brown algaeFucus serratus: inhibition of fertilization and zygotic development. Nanotoxicology 2(2):88–97

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59(11):3051–3068

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907

    Article  CAS  Google Scholar 

  • Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol Vitro 25(5):1097–1105

    Article  CAS  Google Scholar 

  • Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29(5):1146–1154

    CAS  Google Scholar 

  • Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108

    Article  CAS  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    Article  CAS  Google Scholar 

  • Rajeshwari A, Suresh S, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6(29):24000–24009

    Article  CAS  Google Scholar 

  • Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55(396):433–447

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642

    Article  CAS  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118

    Article  CAS  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360

    Article  CAS  Google Scholar 

  • Sattelmacher BHW (2007) The apoplast of higher plants: compartment of storage, transport and reactions: the significance of the apoplast for the mineral nutrition of higher plants. Springer, Dordrecht

    Google Scholar 

  • Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95(7):1069–1073

    Article  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15(10):546–553

    Article  CAS  Google Scholar 

  • Schreiber L, Elshatshat S, Koch K, Lin J, Santrucek J (2006) AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta 223(2):283–290

    Article  CAS  Google Scholar 

  • Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L et al (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144

    Article  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598

    Article  CAS  Google Scholar 

  • Shane MW, McCully ME, Canny MJ (2000) The vascular system of maize stems revisited: implications for water transport and xylem safety. Ann Bot 86(2):245–258

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  Google Scholar 

  • Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J et al (2013a) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67

    Article  CAS  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013b) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155(1):93–103

    Article  CAS  Google Scholar 

  • Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P et al (2013) In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179:258–267

    Article  CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Su M, Liu H, Liu C, Qu C, Zheng L, Hong F (2009) Promotion of nano-anatase TiO(2) on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim Acta Part A Mol Biomol Spectrosc 72(5):1112–1116

    Article  CAS  Google Scholar 

  • Suresh S, Karthikeyan S, Jayamoorthy K (2016) Effect of bulk and nano-Fe 2 O 3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J Adv Res 7(5):739–747

    Article  CAS  Google Scholar 

  • Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793

    Article  CAS  Google Scholar 

  • Thorne ET, Young BM, Young GM, Stevenson JF, Labavitch JM, Matthews MA et al (2006) The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am J Bot 93(4):497–504

    Article  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell Environ 25(2):173–194

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042

    Article  CAS  Google Scholar 

  • Van Hoecke K, De Schamphelaere KA, Ramirez-Garcia S, Van der Meeren P, Smagghe G, Janssen CR (2011) Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ Int 37(6):1118–1125

    Article  CAS  Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752

    Article  CAS  Google Scholar 

  • Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H et al (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8(3):2161–2175

    Article  CAS  Google Scholar 

  • Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F et al (2015) Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “a sticky story”. Nanotoxicology 9(2):219–229

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  Google Scholar 

  • Wang Q, Ebbs SD, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5(6):753–759

    Article  CAS  Google Scholar 

  • Wang J, Yang Y, Zhu H, Braam J, Schnoor JL, Alvarez PJ (2014) Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environ Sci Technol 48(12):6754–6762

    Article  CAS  Google Scholar 

  • Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3(8):603–605

    Article  Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246–247:110–118

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132

    Article  CAS  Google Scholar 

  • Yang X, Baskin JM, Baskin CC, Huang Z (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14(6):434–442

    Article  Google Scholar 

  • Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in triticum aestivum. Water Air Soil Pollut 226(9):296

    Article  CAS  Google Scholar 

  • Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics: Integr Biometal Sci 3(8):816–822

    Article  CAS  Google Scholar 

  • Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit: JEM 10(6):713–717

    Article  CAS  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215

    Article  CAS  Google Scholar 

  • Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398

    Article  CAS  Google Scholar 

  • Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159(10):3123–3128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding agency UGC is duly acknowledged for providing the fellowship [22/12/2013(ii) EU-V)] to Mr. Atul Dev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dev, A., Srivastava, A.K. & Karmakar, S. Nanomaterial toxicity for plants. Environ Chem Lett 16, 85–100 (2018). https://doi.org/10.1007/s10311-017-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0667-6

Keywords

Navigation