Environmental Chemistry Letters

, Volume 16, Issue 1, pp 85–100 | Cite as

Nanomaterial toxicity for plants

  • Atul Dev
  • Anup Kumar Srivastava
  • Surajit Karmakar


Nanomaterials occur widely in ecosystems as the result of both natural processes and human activities. Reports suggest that altered growth patterns in plants result from interactions of nanomaterials and plants. Plant physiological barriers provide some resistance against nanomaterial toxicity. Plants regulate its cell machinery to overcome nanomaterial-mediated stress. Engineered nanomaterials modify plant properties according to there size and surface properties. This article reviews interactions of plants with engineered nanomaterials, their uptake, translocation, and toxicity. The detoxification mechanisms of nanomaterials are described at physiological, proteomic, transcriptomic, and metabolomics levels.


Nanotoxicity Translocation Accumulation Detoxification pathways Natural barriers Biotransformation Phenomics Metabolomics 



Funding agency UGC is duly acknowledged for providing the fellowship [22/12/2013(ii) EU-V)] to Mr. Atul Dev.


  1. Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E et al (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841CrossRefGoogle Scholar
  2. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant, Cell Environ 32(5):577–584CrossRefGoogle Scholar
  3. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P et al (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827CrossRefGoogle Scholar
  4. Auffan M, Achouak W, Rose J, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735CrossRefGoogle Scholar
  5. Bali R, Siegele R, Harris AT (2010) Biogenic Pt uptake and nanoparticle formation in Medicago sativa and Brassica juncea. J Nanopart Res 12(8):3087–3095CrossRefGoogle Scholar
  6. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857CrossRefGoogle Scholar
  7. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8CrossRefGoogle Scholar
  8. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222CrossRefGoogle Scholar
  9. Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P et al (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650CrossRefGoogle Scholar
  10. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE 7(5):e34783CrossRefGoogle Scholar
  11. Carocho M, Ferreira IC (2013) A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 51:15–25CrossRefGoogle Scholar
  12. Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147CrossRefGoogle Scholar
  13. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G et al (2010) Differential uptake of carbon nanoparticles by plant and Mammalian cells. Small 6(5):612–617CrossRefGoogle Scholar
  14. Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869CrossRefGoogle Scholar
  15. Cobbett CSMM, Howden R (1998) Rolls B The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thalianais deficient in γ-glutamylcysteine synthetase. Plant J 16(1):73–78CrossRefGoogle Scholar
  16. Corredor E, Testillano PS, Coronado MJ, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C et al (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45CrossRefGoogle Scholar
  17. Cs C (2000) Phytochelatin biosynthesis and function in heavymetal detoxification. Curr Opin Plant Biol 3(3):211–216CrossRefGoogle Scholar
  18. Dev A, Srivastava AK, Karmakar S (2017) Uptake and toxicity of nanomaterials in plants. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 5 sustainable agriculture reviews, vol 26. Springer, ChamGoogle Scholar
  19. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20(11):1140–1145CrossRefGoogle Scholar
  20. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589CrossRefGoogle Scholar
  21. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47(2):1082–1090CrossRefGoogle Scholar
  22. Driouich A, Follet-Gueye ML, Vicre-Gibouin M, Hawes M (2013) Root border cells and secretions as critical elements in plant host defense. Curr Opin Plant Biol 16(4):489–495CrossRefGoogle Scholar
  23. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiol Plant 132(4):491–502CrossRefGoogle Scholar
  24. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1(4):196–200CrossRefGoogle Scholar
  25. Fahn A (1982) Plant anatomy. Pergamon Press, OxfordGoogle Scholar
  26. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332CrossRefGoogle Scholar
  27. Faiyue B, Al-Azzawi MJ, Flowers TJ (2010) The role of lateral roots in bypass flow in rice (Oryza sativa L.). Plant, Cell Environ 33(5):702–716Google Scholar
  28. Fitzpatrick KL, Reid RJ (2009) The involvement of aquaglyceroporins in transport of boron in barley roots. Plant, Cell Environ 32(10):1357–1365CrossRefGoogle Scholar
  29. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838CrossRefGoogle Scholar
  30. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P et al (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116–119CrossRefGoogle Scholar
  31. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B et al (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci: CMLS 68(12):2067–2079CrossRefGoogle Scholar
  32. Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO(2) on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70CrossRefGoogle Scholar
  33. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  34. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361CrossRefGoogle Scholar
  35. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47(18):10645–10652Google Scholar
  36. Grill ELS, Winnacker EL (1989) Zenk MH Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86(18):6838–6842CrossRefGoogle Scholar
  37. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613CrossRefGoogle Scholar
  38. Harris AT, Bali R (2007) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10(4):691–695CrossRefGoogle Scholar
  39. Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5(3):128–133CrossRefGoogle Scholar
  40. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170(1–3):346–352CrossRefGoogle Scholar
  41. Hischemoller A, Nordmann J, Ptacek P, Mummenhoff K, Haase M (2009) In-vivo imaging of the uptake of upconversion nanoparticles by plant roots. J Biomed Nanotechnol 5(3):278–284CrossRefGoogle Scholar
  42. Hopkins FGHLJ (1929) On glutathione: a reinvestigation. J Biol Chem 84(1):269–320Google Scholar
  43. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):229CrossRefGoogle Scholar
  44. Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15(6):1676CrossRefGoogle Scholar
  45. Jozef S (2012) Endocytosis in plants. Springer, BerlinGoogle Scholar
  46. Judy JD, Unrine JM, Bertsch PM (2011) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781CrossRefGoogle Scholar
  47. Kadar E, Rooks P, Lakey C, White DA (2012) The effect of engineered iron nanoparticles on growth and metabolic status of marine microalgae cultures. Sci Total Environ 439:8–17CrossRefGoogle Scholar
  48. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155(1–3):55–61CrossRefGoogle Scholar
  49. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190(1–3):613–621CrossRefGoogle Scholar
  50. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302CrossRefGoogle Scholar
  51. Landa P, Vankova R, Andrlova J, Hodek J, Marsik P, Storchova H et al (2012) Nanoparticle-specific changes in Arabidopsis thaliana gene expression after exposure to ZnO, TiO2, and fullerene soot. J Hazard Mater 241–242:55–62CrossRefGoogle Scholar
  52. Larue C, Khodja H, Herlin-Boime N, Brisset F, Flank AM, Fayard B et al (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys: Conf Ser 304:012057Google Scholar
  53. Larue C, Castillo-Michel H, Sobanska S, Trcera N, Sorieul S, Cecillon L et al (2014) Fate of pristine TiO2 nanoparticles and aged paint-containing TiO2 nanoparticles in lettuce crop after foliar exposure. J Hazard Mater 273:17–26CrossRefGoogle Scholar
  54. Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and Bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50CrossRefGoogle Scholar
  55. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27(9):1915–1921CrossRefGoogle Scholar
  56. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J et al (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29(3):669–675CrossRefGoogle Scholar
  57. Lee SS, Song W, Cho M, Puppala HL, Nguyen P, Zhu H et al (2013a) Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano 7(11):9693–9703CrossRefGoogle Scholar
  58. Lee S, Kim S, Kim S, Lee I (2013b) Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res Int 20(2):848–854CrossRefGoogle Scholar
  59. Lee S, Chung H, Kim S, Lee I (2013c) The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Pollut 224(9):1668CrossRefGoogle Scholar
  60. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250CrossRefGoogle Scholar
  61. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132Google Scholar
  62. Liu Q, Zhang X, Zhao Y, Lin J, Shu C, Wang C et al (2013) Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ Sci Technol 47(13):7490–7498CrossRefGoogle Scholar
  63. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR et al (2010a) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44(19):7315–7320CrossRefGoogle Scholar
  64. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010b) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO(2) nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693CrossRefGoogle Scholar
  65. Lü P, Cao J, He S, Liu J, Li H, Cheng G et al (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57(3):196–202CrossRefGoogle Scholar
  66. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z et al (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279CrossRefGoogle Scholar
  67. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013a) Physiological and molecular response of arabidopsis thaliana(L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778CrossRefGoogle Scholar
  68. Ma X, Gurung A, Deng Y (2013b) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849CrossRefGoogle Scholar
  69. McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nat Educ Knowl 4:1Google Scholar
  70. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239CrossRefGoogle Scholar
  71. Mirzajani F, Askari H, Hamzelou S, Schober Y, Rompp A, Ghassempour A et al (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339CrossRefGoogle Scholar
  72. Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MN (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44(1):25–37CrossRefGoogle Scholar
  73. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410CrossRefGoogle Scholar
  74. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498CrossRefGoogle Scholar
  75. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481CrossRefGoogle Scholar
  76. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61(26):6224–6230CrossRefGoogle Scholar
  77. Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N et al (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120(Pt 21):3804–3819CrossRefGoogle Scholar
  78. Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G (ed) Advances in selected plant physiology aspects. InTech. doi: 10.5772/34557
  79. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6(1):132–138CrossRefGoogle Scholar
  80. Mura SSG, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):127–140Google Scholar
  81. Mushtaq YK (2011) Effect of nanoscale Fe(3)O(4), TiO(2) and carbon particles on cucumber seed germination. J Environ Sci Health, Part A 46(14):1732–1735CrossRefGoogle Scholar
  82. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118CrossRefGoogle Scholar
  83. Nadiminti PP, Dong YD, Sayer C, Hay P, Rookes JE, Boyd BJ et al (2013) Nanostructured liquid crystalline particles as an alternative delivery vehicle for plant agrochemicals. ACS Appl Mater Interfaces 5(5):1818–1826CrossRefGoogle Scholar
  84. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386CrossRefGoogle Scholar
  85. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627CrossRefGoogle Scholar
  86. Nielsen HD, Berry LS, Stone V, Burridge TR, Fernandes TF (2009) Interactions between carbon black nanoparticles and the brown algaeFucus serratus: inhibition of fertilization and zygotic development. Nanotoxicology 2(2):88–97CrossRefGoogle Scholar
  87. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  88. Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59(11):3051–3068CrossRefGoogle Scholar
  89. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32(4):902–907CrossRefGoogle Scholar
  90. Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN et al (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol Vitro 25(5):1097–1105CrossRefGoogle Scholar
  91. Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29(5):1146–1154Google Scholar
  92. Paulose B, Kandasamy S, Dhankher OP (2010) Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol 10:108CrossRefGoogle Scholar
  93. Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11CrossRefGoogle Scholar
  94. Rajeshwari A, Suresh S, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6(29):24000–24009CrossRefGoogle Scholar
  95. Ranathunge K, Kotula L, Steudle E, Lafitte R (2004) Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores. J Exp Bot 55(396):433–447CrossRefGoogle Scholar
  96. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498CrossRefGoogle Scholar
  97. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY et al (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47(11):5635–5642CrossRefGoogle Scholar
  98. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J et al (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118CrossRefGoogle Scholar
  99. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360CrossRefGoogle Scholar
  100. Sattelmacher BHW (2007) The apoplast of higher plants: compartment of storage, transport and reactions: the significance of the apoplast for the mineral nutrition of higher plants. Springer, DordrechtGoogle Scholar
  101. Schreiber L (2005) Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Ann Bot 95(7):1069–1073CrossRefGoogle Scholar
  102. Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15(10):546–553CrossRefGoogle Scholar
  103. Schreiber L, Elshatshat S, Koch K, Lin J, Santrucek J (2006) AgCl precipitates in isolated cuticular membranes reduce rates of cuticular transpiration. Planta 223(2):283–290CrossRefGoogle Scholar
  104. Schwab F, Bucheli TD, Lukhele LP, Magrez A, Nowack B, Sigg L et al (2011) Are carbon nanotube effects on green algae caused by shading and agglomeration? Environ Sci Technol 45(14):6136–6144CrossRefGoogle Scholar
  105. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B, Zhao L et al (2013) Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47(20):11592–11598CrossRefGoogle Scholar
  106. Shane MW, McCully ME, Canny MJ (2000) The vascular system of maize stems revisited: implications for water transport and xylem safety. Ann Bot 86(2):245–258CrossRefGoogle Scholar
  107. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26CrossRefGoogle Scholar
  108. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254Google Scholar
  109. Song U, Jun H, Waldman B, Roh J, Kim Y, Yi J et al (2013a) Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol Environ Saf 93:60–67CrossRefGoogle Scholar
  110. Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013b) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155(1):93–103CrossRefGoogle Scholar
  111. Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M, Bhattacharya P et al (2013) In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ Pollut 179:258–267CrossRefGoogle Scholar
  112. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479CrossRefGoogle Scholar
  113. Su M, Liu H, Liu C, Qu C, Zheng L, Hong F (2009) Promotion of nano-anatase TiO(2) on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim Acta Part A Mol Biomol Spectrosc 72(5):1112–1116CrossRefGoogle Scholar
  114. Suresh S, Karthikeyan S, Jayamoorthy K (2016) Effect of bulk and nano-Fe 2 O 3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J Adv Res 7(5):739–747CrossRefGoogle Scholar
  115. Taylor AF, Rylott EL, Anderson CW, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793CrossRefGoogle Scholar
  116. Thorne ET, Young BM, Young GM, Stevenson JF, Labavitch JM, Matthews MA et al (2006) The structure of xylem vessels in grapevine (Vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am J Bot 93(4):497–504CrossRefGoogle Scholar
  117. Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell Environ 25(2):173–194CrossRefGoogle Scholar
  118. Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042CrossRefGoogle Scholar
  119. Van Hoecke K, De Schamphelaere KA, Ramirez-Garcia S, Van der Meeren P, Smagghe G, Janssen CR (2011) Influence of alumina coating on characteristics and effects of SiO2 nanoparticles in algal growth inhibition assays at various pH and organic matter contents. Environ Int 37(6):1118–1125CrossRefGoogle Scholar
  120. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L et al (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752CrossRefGoogle Scholar
  121. Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H et al (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8(3):2161–2175CrossRefGoogle Scholar
  122. Verneuil L, Silvestre J, Mouchet F, Flahaut E, Boutonnet JC, Bourdiol F et al (2015) Multi-walled carbon nanotubes, natural organic matter, and the benthic diatom Nitzschia palea: “a sticky story”. Nanotoxicology 9(2):219–229CrossRefGoogle Scholar
  123. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51CrossRefGoogle Scholar
  124. Wang Q, Ebbs SD, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5(6):753–759CrossRefGoogle Scholar
  125. Wang J, Yang Y, Zhu H, Braam J, Schnoor JL, Alvarez PJ (2014) Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings. Environ Sci Technol 48(12):6754–6762CrossRefGoogle Scholar
  126. Watanabe T, Misawa S, Hiradate S, Osaki M (2008) Root mucilage enhances aluminum accumulation in Melastoma malabathricum, an aluminum accumulator. Plant Signal Behav 3(8):603–605CrossRefGoogle Scholar
  127. Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M et al (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246–247:110–118CrossRefGoogle Scholar
  128. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132CrossRefGoogle Scholar
  129. Yang X, Baskin JM, Baskin CC, Huang Z (2012) More than just a coating: ecological importance, taxonomic occurrence and phylogenetic relationships of seed coat mucilage. Perspect Plant Ecol Evol Syst 14(6):434–442CrossRefGoogle Scholar
  130. Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in triticum aestivum. Water Air Soil Pollut 226(9):296CrossRefGoogle Scholar
  131. Zhang Z, He X, Zhang H, Ma Y, Zhang P, Ding Y et al (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics: Integr Biometal Sci 3(8):816–822CrossRefGoogle Scholar
  132. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y, Peralta-Videa JR et al (2012) Stress response and tolerance of Zea mays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6(11):9615–9622CrossRefGoogle Scholar
  133. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit: JEM 10(6):713–717CrossRefGoogle Scholar
  134. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215CrossRefGoogle Scholar
  135. Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46(22):12391–12398CrossRefGoogle Scholar
  136. Zulfiqar A, Paulose B, Chhikara S, Dhankher OP (2011) Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut 159(10):3123–3128CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Habitat CentreInstitute of Nano Science and TechnologyMohaliIndia

Personalised recommendations