pp 1–32 | Cite as

Evaluating groups with the generalized Shapley value

  • Ramón Flores
  • Elisenda Molina
  • Juan Tejada
Research Paper


Following the original interpretation of the Shapley value as a priori evaluation of the prospects of a player in a multi-person interaction situation, we intend to apply the Shapley generalized value (introduced formally in Marichal et al. in Discrete Appl Math 155:26–43, 2007) as a tool for the assessment of a group of players that act as a unit in a coalitional game. We propose an alternative axiomatic characterization which does not use a direct formulation of the classical efficiency property. Relying on this valuation, we also analyze the profitability of a group. We motivate this use of the Shapley generalized value by means of two relevant applications in which it is used as an objective function by a decision maker who is trying to identify an optimal group of agents in a framework in which agents interact and the attained benefit can be modeled by means of a transferable utility game.


Game theory TU games Shapley value Generalized values Group values 

Mathematics Subject Classification

91A12 91A43 



We would like to warmly thank Javier Castro (Universidad Complutense de Madrid) for the simulation program used to obtain the numerical results in Sect. 5.


  1. Amer R, Gimenez JM (2004) A connectivity game for graphs. Math Methods Oper Res 60:453–470CrossRefGoogle Scholar
  2. Aumann RJ, Drèze JH (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237CrossRefGoogle Scholar
  3. Bulow JI, Geanakoplos JD, Klemperer PD (1985) Multimarket oligopoly: strategic substitutes and complements. J Polit Econ 93:488–511CrossRefGoogle Scholar
  4. Castro J, Gomez D, Tejada J (2009) Polynomial calculation of the Shapley value based on sampling. Comput Oper Res 36:1726–1730CrossRefGoogle Scholar
  5. Crama Y, Leruth L (2013) Power indices and the measurement of control in corporate structures. Int Game Theory Rev 15(3):1340017CrossRefGoogle Scholar
  6. Derks J, Tijs S (2000) On merge properties of the Shapley value. Int Game Theory Rev 2:249–257CrossRefGoogle Scholar
  7. Flores R, Molina E, Tejada J (2014) The Shapley group value. arXiv:1412.5429 [math.OC]
  8. Fujimoto K, Kojadinovic I, Marichal JL (2006) Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices. Games Econ Behav 55:72–99CrossRefGoogle Scholar
  9. Grabisch M, Roubens M (1999) An axiomatic approach to the concept of interaction among players in cooperative games. Int J Game Theory 28:547–565CrossRefGoogle Scholar
  10. Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83:1420–1443CrossRefGoogle Scholar
  11. Gul F (1989) Bargaining foundations of Shapley value. Econometrica 57:81–95CrossRefGoogle Scholar
  12. Hamlen SS, Hamlen WA Jr, Tschirhart J (1980) The use of the generalized Shapley allocation in joint cost allocation. Account Rev 55:269–287Google Scholar
  13. Hart S, Kurz M (1983) Endogenous formation of coalitions. Econometrica 51:1047–1064CrossRefGoogle Scholar
  14. Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Thoery 16:205–222CrossRefGoogle Scholar
  15. Kempe D, Kleinberg J, Tardos E (2005) Influential nodes in a diffusion model for social networks. In: Proceedings of the 32nd international colloquium on automata, languages and programming, pp 1127–1138Google Scholar
  16. Koschade S (2006) A social network analysis of Jeemaah Islamiyah: the applications to counterterrorism and intelligence. Stud Confl Terror 29:559–575CrossRefGoogle Scholar
  17. Krebs V (2002) Mapping networks of terrorist cells. Connections 24:43–52Google Scholar
  18. Lehrer E (1988) An axiomatization of the Banzhaf value. Int J Game Theory 17:89–99CrossRefGoogle Scholar
  19. Lindelauf R, Hamers HJM, Husslage BGM (2013) Cooperative game theoretic centrality analysis of terrorist networks: the cases of Jemaah Islamiyah and Al Qaeda. Eur J Oper Res 229:230–238CrossRefGoogle Scholar
  20. Liu F, Fan Y, Ordoñez F (2009) A two-stage stochastic programming model for transportation network protection. Comput Oper Res 36:1582–1590CrossRefGoogle Scholar
  21. Lucchetti R, Moretti S, Patrone F (2015) Ranking sets of interacting objects via semivalues. TOP 23:567–590CrossRefGoogle Scholar
  22. Marichal JL (2000) The influence of variables on pseudo-Boolean functions with applications to game theory and multicriteria decision making. Discrete Appl Math 107:139–164CrossRefGoogle Scholar
  23. Marichal JL, Kojadinovic I, Fujimoto J (2007) Axiomatic characterizations of generalized values. Discrete Appl Math 155:26–43CrossRefGoogle Scholar
  24. McQuillin B (2009) The extended and generalized Shapley value: simultaneous consideration of coalitional externalities and coalitional structure. J Econ Theory 144:696–721CrossRefGoogle Scholar
  25. Moretti S, Tsoukias A (2012) Ranking sets of possibly interacting objects using Shapley extensions. In: Thirteenth international conference on the principles of knowledge representation and reasoning (KR 2012). AAAI Press, pp 199–209Google Scholar
  26. Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2:225–229CrossRefGoogle Scholar
  27. Narayanam R, Narahari Y (2011) A shapley value-based approach to discover influential nodes in social networks. IEEE Trans Autom Sci Eng 99:1–18Google Scholar
  28. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Springer, New YorkGoogle Scholar
  29. Segal I (2003) Collusion, exclusion and inclusion in random-order bargaining. Rev Econ Stud 70:439–460CrossRefGoogle Scholar
  30. Shapley LS (1953a) A value for \(n\)-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games, vol II. Princeton University Press, Princeton, pp 307–317Google Scholar
  31. Shapley LS (1953b) Additive and non-additive set functions. Ph.D. thesis, Princeton UniversityGoogle Scholar
  32. Vitali S, Glattfelder JB, Battiston B (2011) The network of global corporate control. PLOS ONE 6:e25995CrossRefGoogle Scholar
  33. Winter E (2002) The Shapley value. In: Aumann RJ, Hart S (eds) Handbook of game theory with economic applications, vol 3. North-Holland Publishing Company, Amsterdam, pp 2025–2054Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Geometría y TopologíaIMUS-Universidad de SevillaSevilleSpain
  2. 2.Departamento de EstadísticaUniversidad Carlos III de MadridMadridSpain
  3. 3.Departamento de Estadística e Investigación Operativa, Instituto de Matemática Interdisciplinar (IMI)Universidad Complutense de MadridMadridSpain

Personalised recommendations