Skip to main content
Log in

Asymptotic distribution of quasi-maximum likelihood estimation of dynamic panels using long difference transformation when both N and T are large

  • Original Paper
  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

This note shows that the asymptotic properties of the quasi-maximum likelihood estimation for dynamic panel models can be easily derived by following the approach of Grassetti (Stat Methods Appl 20:221–240, 2011) to take the long difference to remove the time-invariant individual specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez J, Arellano M (2003) The time series and cross-section asymptotics of dynamic panel data estimators. Econometrica 71:1121–1159

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson TW, Hsiao C (1981) Estimation of dynamic models with error components. J Am Stat Assoc 76:598–606

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson TW, Hsiao C (1982) Formulation and estimation of dynamic models using panel data. J Econom 18:47–82

    Article  MathSciNet  MATH  Google Scholar 

  • Arellano M, Bond S (1991) Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev Econ Stud 58:277–297

    Article  MATH  Google Scholar 

  • Arellano M, Bover O (1995) Another look at the instrumental variable estimation of error-components models. J Econom 68:29–51

    Article  MATH  Google Scholar 

  • Balestra P, Nerlove M (1966) Pooling cross-section and time series data in the estimation of a dynamic model: the demand for natural gas. Econometrica 34:585–612

    Article  Google Scholar 

  • Bond S (2002) Dynamic panel data models: a guide to micro data methods and practice. Port Econ J 1:141–162

    Article  Google Scholar 

  • Grassetti L (2011) A note on transformed likelihood approach in linear dynamic panel models. Stat Methods Appl 20:221–240

    Article  MathSciNet  MATH  Google Scholar 

  • Hahn J, Hausman J, Kuersteiner G (2007) Long difference instrumental variables estimation for dynamic panel models with fixed effects. J Econom 140:574–617

    Article  MathSciNet  MATH  Google Scholar 

  • Hsiao C (2014) Analysis of panel data. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hsiao C, Pesaran MH, Tahmiscioglu AK (2002) Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods. J Econom 109:107–150

    Article  MathSciNet  MATH  Google Scholar 

  • Hsiao C, Zhang J (2015) IV, GMM or likelihood approach to estimate dynamic panel models when either \(N\) or \(T\) or both are large. J Econom 187:312–322

    Article  MathSciNet  MATH  Google Scholar 

  • Yamani H, Abdelmonem M (1997) The analytic inversion of any finite symmetric tridiagonal matrix. J Phys A Math Gen 30:2889–2893

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiankun Zhou.

Additional information

We would like to thank M. H. Pesaran and K. Hayakawa for calling our attention to the Grassetti (2011) paper, two anonymous referees for helpful comments and suggestions. Partial research support of China NSF Grant #71131008 to the first author is gratefully acknowledged.

Appendix

Appendix

Since

$$\begin{aligned}&\sqrt{NT}\left( \hat{\gamma }_{MLE}-\gamma \right) \nonumber \\&\quad =\left( \frac{1}{NT} \sum _{i=1}^{N}\tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}\tilde{{\mathbf {y}}}_{i,-1}\right) ^{-1}\left( \frac{1}{\sqrt{NT}}\sum _{i=1}^{N}\tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}\left( -\xi _{i}{\mathbf {1}}_{T}+{\mathbf {u}} _{i}\right) \right) , \qquad \qquad \end{aligned}$$
(6.1)

and from (2.8),

$$\begin{aligned} \tilde{y}_{it}=-\xi _{i}\frac{1-\gamma ^{t}}{1-\gamma } +\sum _{s=1}^{t}\gamma ^{t-s}u_{is}. \end{aligned}$$

The denominator of (6.1) is of the form

$$\begin{aligned} \frac{1}{NT}\sum _{i=1}^{N}\tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1} \tilde{{\mathbf {y}}}_{i,-1}= & {} \frac{1}{\sigma _{u}^{2}}\frac{1}{NT} \sum _{i=1}^{N}\tilde{{\mathbf {y}}}_{i,-1}^{\prime }\left( \left[ I_{T}-\frac{ \sigma _{\xi }^{2}}{\sigma _{u}^{2}+T\sigma _{\xi }^{2}}{\mathbf {1}}_{T} {\mathbf {1}}_{T}^{\prime }\right] \right) \tilde{{\mathbf {y}}}_{i,-1} \nonumber \\= & {} \frac{1}{\sigma _{u}^{2}}\frac{1}{NT}\sum _{i=1}^{N}\sum _{t=1}^{T-1}\tilde{ y}_{it-1}^{2}\nonumber \\&-\frac{\sigma _{\xi }^{2}}{\sigma _{u}^{2}\left( \sigma _{u}^{2}+T\sigma _{\xi }^{2}\right) }\frac{1}{NT}\sum _{i=1}^{N}\left( \sum _{t=1}^{T-1}\tilde{y}_{it-1}\right) ^{2}, \end{aligned}$$
(6.2)

By continuous substitution, the first term on the right hand side of (6.2)

$$\begin{aligned} \frac{1}{\sigma _{u}^{2}}\frac{1}{NT}\sum _{i=1}^{N}\sum _{t=1}^{T-1}\tilde{y}_{it-1}^{2}= & {} \frac{1}{\sigma _{u}^{2}}\frac{1}{NT}\sum _{i=1}^{N} \sum _{t=1}^{T-1}\frac{\left( 1-\gamma ^{t}\right) ^{2}}{\left( 1-\gamma \right) ^{2}}\xi _{i}^{2}\nonumber \\&+\;\frac{1}{\sigma _{u}^{2}}\frac{1}{NT} \sum _{i=1}^{N}\sum _{t=1}^{T-1}\left( \sum _{s=1}^{t}\gamma ^{t-s}u_{is}\right) ^{2} \nonumber \\&-\;2\frac{1}{\sigma _{u}^{2}}\frac{1}{NT}\sum _{i=1}^{N}\sum _{t=1}^{T-1} \sum _{s=1}^{t}\frac{1-\gamma ^{t}}{1-\gamma }\xi _{i}\gamma ^{t-s}u_{is}\nonumber \\= & {} \frac{1}{\left( 1-\gamma \right) ^{2}\sigma _{u}^{2}}\frac{1}{N} \sum _{i=1}^{N}\xi _{i}^{2}+\frac{1}{\sigma _{u}^{2}}\frac{1}{NT} \sum _{i=1}^{N}\sum _{t=1}^{T-1}\left( \sum _{s=1}^{t}\gamma ^{t-s}u_{is}\right) ^{2}\nonumber \\&+\;o_{p}\left( 1\right) \nonumber \\&\overset{p}{\rightarrow }\frac{\sigma _{\xi }^{2}}{\left( 1-\gamma \right) ^{2}\sigma _{u}^{2}}+\frac{1}{1-\gamma ^{2}}, \end{aligned}$$
(6.3)

For the second term of the right hand side of (6.2), we note that for all i

$$\begin{aligned} \frac{1}{T}\sum _{t=1}^{T-1}\tilde{y}_{it-1}=-\xi _{i}\frac{1}{T} \sum _{t=1}^{T-1}\frac{1-\gamma ^{t}}{1-\gamma }+\frac{1}{T} \sum _{t=1}^{T-1}\sum _{s=1}^{t}\gamma ^{t-s}u_{is}, \end{aligned}$$

with

$$\begin{aligned} \frac{1}{N}\sum _{i=1}^{N}\left( \frac{1}{T}\sum _{t=1}^{T-1}\tilde{y}_{it-1}\right) ^{2}= & {} \frac{1}{N}\sum _{i=1}^{N}\xi _{i}^{2}\left( \frac{1}{T }\sum _{t=1}^{T-1}\frac{1-\gamma ^{t}}{1-\gamma }\right) ^{2}\\&+\,\frac{1}{N} \sum _{i=1}^{N}\left( \frac{1}{T}\sum _{t=1}^{T-1}\sum _{s=1}^{t}\gamma ^{t-s}u_{is}\right) ^{2}\\&-\,\frac{1}{1-\gamma }\frac{1}{N}\sum _{i=1}^{N}2\xi _{i}\frac{1}{T} \sum _{t=1}^{T-1}\sum _{s=1}^{t}\gamma ^{t-s}u_{is}+o_{p}\left( 1\right) \\&\overset{p}{\rightarrow }\frac{\sigma _{\xi }^{2}}{\left( 1-\gamma \right) ^{2}}, \end{aligned}$$

then

$$\begin{aligned} \frac{\sigma _{\xi }^{2}}{\sigma _{u}^{2}\left( \sigma _{u}^{2}+T\sigma _{\xi }^{2}\right) }\frac{1}{NT}\sum _{i=1}^{N}\left( \sum _{t=1}^{T-1}\tilde{y }_{it-1}\right) ^{2}= & {} \frac{T\sigma _{\xi }^{2}}{\sigma _{u}^{2}\left( \sigma _{u}^{2}+T\sigma _{\xi }^{2}\right) }\frac{1}{N}\sum _{i=1}^{N}\left( \frac{1}{T}\sum _{t=1}^{T-1}\tilde{y}_{it-1}\right) ^{2} \nonumber \\&\overset{p}{\rightarrow }\frac{\sigma _{\xi }^{2}}{\sigma _{u}^{2}\left( 1-\gamma \right) ^{2}}, \end{aligned}$$
(6.4)

as \(\left( N,T\right) \rightarrow \infty \). Combining (6.3) and (6.4) yields

$$\begin{aligned} \frac{1}{NT}\sum _{i=1}^{N}\tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1} \tilde{{\mathbf {y}}}_{i,-1}\overset{p}{\rightarrow }\frac{1}{1-\gamma ^{2}}, \end{aligned}$$
(6.5)

as \(\left( N,T\right) \rightarrow \infty \).

For the limit of the numerator of (6.1), we note that

$$\begin{aligned} E\left[ \tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}\xi _{i}{\mathbf {1}}_{T} \right] =\frac{\sigma _{u}^{-2}}{1+T\sigma _{\xi }^{2}\sigma _{u}^{-2}}E \left[ \tilde{{\mathbf {y}}}_{i,-1}^{\prime }{\mathbf {1}}_{T}\xi _{i}\right] =- \frac{\sigma _{\xi }^{2}\sigma _{u}^{-2}}{1+T\sigma _{\xi }^{2}\sigma _{u}^{-2}}\sum _{t=1}^{T-1}\frac{\left( 1-\gamma ^{t}\right) }{1-\gamma } \end{aligned}$$
(6.6)

and

$$\begin{aligned} E\left( \tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}{\mathbf {u}}_{i}\right)= & {} \sigma _{u}^{-2}E\left( \tilde{{\mathbf {y}}}_{i,-1}^{\prime }{\mathbf {u}} _{i}\right) -\frac{\sigma _{\xi }^{2}\sigma _{u}^{-4}}{1+T\sigma _{\xi }^{2}\sigma _{u}^{-2}}E\left( \tilde{{\mathbf {y}}}_{i,-1}^{\prime }{\mathbf {1}}_{T}{\mathbf {1}}_{T}^{\prime }{\mathbf {u}}_{i}\right) \nonumber \\= & {} -\frac{\sigma _{\xi }^{2}\sigma _{u}^{-2}}{1+T\sigma _{\xi }^{2}\sigma _{u}^{-2}}\sum _{t=1}^{T-1}\frac{1-\gamma ^{t}}{1-\gamma }, \end{aligned}$$
(6.7)

Combining (6.6) and (6.7) yields

$$\begin{aligned} E\left( \tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}\left( -\xi _{i} {\mathbf {1}}_{T}+{\mathbf {u}}_{i}\right) \right) =0, \end{aligned}$$

This suggests that the MLE of \(\gamma \) is asymptotically unbiased either N or T or both tend to infinity.

Furthermore, under assumptions 1–2, the variance of the MLE \(\hat{\gamma }_{MLE}\) is given by

$$\begin{aligned} V_{MLE}^{-1}=-\frac{1}{NT}E\left( \frac{\partial ^{2}\log L}{\partial \gamma ^{2}}\right) =\frac{1}{NT}\sum _{i=1}^{N}E\left( \tilde{{\mathbf {y}}}_{i,-1}^{\prime }\Omega ^{-1}\tilde{{\mathbf {y}}}_{i,-1}\right) =\frac{1}{ 1-\gamma ^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiao, C., Zhou, Q. Asymptotic distribution of quasi-maximum likelihood estimation of dynamic panels using long difference transformation when both N and T are large. Stat Methods Appl 25, 675–683 (2016). https://doi.org/10.1007/s10260-016-0355-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-016-0355-x

Keywords

JEL Classification

Navigation