Skip to main content
Log in

Vestibular Evoked Myographic Correlation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

This work started from the hypothesis that the physiological processes giving rise to the vestibular evoked myogenic potential (VEMP) can be induced not only by transient sounds but also by a continuous stimulation with a stochastic signal. The hypothesis is based on the idea that the number of motor unit action potentials (MUAPs) decreases after a momentary amplitude increase of the effective stimulus, whereas a momentary amplitude decrease has the opposite effect. This concept was theoretically analyzed by assuming that the effective stimulus is closely related to the envelope of the stimulus actually presented. The analysis led to the prediction that the cross-correlation function of the effective stimulus and the measured electromyogram (EMG) has VEMP-like properties. Experiments confirmed this prediction, thus providing evidence of a novel electrophysiological response: the vestibular evoked myographic correlation (VEMCorr). The methodological approach corresponded to a conventional VEMP study, except that the stimulus (delivered with a hand-held minishaker) comprised not only a series of 500-Hz tone pulses (classical VEMP measurement, for comparison) but also sequences of narrow-band noise with a center frequency of 500 Hz (VEMCorr measurement). Each of the 12 test persons showed a clear VEMCorr. Moreover, VEMP and VEMCorr largely resembled each other, as predicted. Apparently they are two different expressions of a more general mechanism that leads to a roughly linear relationship between stimulus envelope and expectation of the EMG. Future applications of the VEMCorr could exploit that a continuous-stimulation paradigm allows for varying the center frequency of the stimulus without changing the relative bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A possible Off response was recently observed by Ciardo et al. (2016).

  2. A peak level of 15 dB re. 1 V corresponds to a peak amplitude of 5.62 V. This amplitude is comparable to what has been used by other authors in previous studies. For example, the stimuli used by Rosengren et al. (2009b) had peak amplitudes of 5 V, and in a study by Todd et al. (2010) the peak-to-peak amplitude was 20 V.

  3. Comparable peak accelerations (20 g) were used, for example, by Iwasaki et al. (2008).

  4. Note that a linear dependence on stimulus level (to some extent found in Fig. 9) corresponds to a non-linear dependence on stimulus intensity, owing to the logarithmic nature of the dB scale.

References

  • Akin FW, Murnane OD, Proffitt TM (2003) The effects of click and tone-burst stimulus parameters on the vestibular evoked myogenic potential (VEMP). J Am Acad Audiol 14:500–509

    Article  PubMed  Google Scholar 

  • Bickford RG, Jacobson JL, Cody DT (1964) Nature of average evoked potentials to sound and other stimuli in man. Ann N Y Acad Sci 112:204–223

    Article  PubMed  CAS  Google Scholar 

  • Bracewell RN (1986) The Fourier transform and its applications, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Brigham EO (1988) The fast Fourier transform and its applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ciardo A, Assawy NE, Mauro S, Priano L (2016) Effects of acoustic stimulus duration on cervical vestibular evoked myogenic potentials: a neurophysiological and modeling study. J Vestib Res 26:359–374

    Article  PubMed  CAS  Google Scholar 

  • Cody DT, Bickford RG (1969) Averaged evoked myogenic responses in normal man. Laryngoscope 79:400–416

    Article  PubMed  CAS  Google Scholar 

  • Cody DT, Klass DW (1968) Cortical audiometry. Potential pitfalls in testing. Arch Otolaryngol 88:396–406

    Article  PubMed  CAS  Google Scholar 

  • Cody DT, Jacobson JL, Walker JC, Bickford RG (1964) Averaged evoked myogenic and cortical potentials to sound in man. Ann Otol Rhinol Laryngol 73:763–777

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Rothwell JC (2004) Motor unit excitability changes mediating vestibulocollic reflexes in the sternocleidomastoid muscle. Clin Neurophysiol 115:2567–2573

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dennis DL, Govender S, Colebatch JG (2016) Properties of cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs) evoked by 500 Hz and 100 Hz bone vibration at the mastoid. Clin Neurophysiol 127:848–857

    Article  PubMed  Google Scholar 

  • Eatock RA, Songer JE (2011) Vestibular hair cells and afferents: two channels for head motion signals. Annu Rev Neurosci 34:501–534

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Peyton MB, Ragi E (1989) Lability of the postauricular and inion microreflexes, studied in the normal human subject. Electroencephalogr Clin Neurophysiol 72:48–58

    Article  PubMed  CAS  Google Scholar 

  • Geisler CD, Frishkopf LS, Rosenblith WA (1958) Extracranial responses to acoustic clicks in man. Science 128:1210–1211

    Article  PubMed  CAS  Google Scholar 

  • Govender S, Dennis DL, Colebatch JG (2016) Frequency and phase effects on cervical vestibular evoked myogenic potentials (cVEMPs) to air-conducted sound. Exp Brain Res 234:2567–2574

    Article  PubMed  Google Scholar 

  • Hackley SA, Ren X, Underwood A, Valle-Inclán F (2017) Prepulse inhibition and facilitation of the postauricular reflex, a vestigial remnant of pinna startle. Psychophysiology 54:566–577

    Article  PubMed  Google Scholar 

  • Halmagyi GM, Colebatch JG, Curthoys IS (1994) New tests of vestibular function. Baillieres Clin Neurol 3:485–500

    PubMed  CAS  Google Scholar 

  • Iwasaki S, Smulders YE, Burgess AM, McGarvie LA, Macdougall HG, Halmagyi GM, Curthoys IS (2008) Ocular vestibular evoked myogenic potentials to bone conducted vibration of the midline forehead at Fz in healthy subjects. Clin Neurophysiol 119:2135–2147

    Article  PubMed  CAS  Google Scholar 

  • Lütkenhöner B (2015) Deconvolution of the vestibular evoked myogenic potential using the power spectrum of the electromyogram. Theor Biol Med Model 12:21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lütkenhöner B (2017) What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker. PLoS One 12:e0174184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lütkenhöner B, Basel T (2011) An analytical model of the vestibular evoked myogenic potential. J Theor Biol 286:41–49

    Article  PubMed  Google Scholar 

  • Lütkenhöner B, Basel T (2012) Deconvolution of the vestibular evoked myogenic potential. J Theor Biol 294:87–97

    Article  PubMed  Google Scholar 

  • Lütkenhöner B, Stoll W, Basel T (2010) Modeling the vestibular evoked myogenic potential. J Theor Biol 263:71–78

    Article  Google Scholar 

  • Lütkenhöner B, Rudack C, Basel T (2011) The variance modulation associated with the vestibular evoked myogenic potential. Clin Neurophysiol 122:1448–1456

    Article  PubMed  Google Scholar 

  • Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill, New York

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes. The art of scientific computing, 3rd edn. Cambridge University Press, New York

    Google Scholar 

  • Proakis JG, Salehi M (2002) Communication systems engineering, 2nd edn. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Rosengren SM, Govender S, Colebatch JG (2009a) The relative effectiveness of different stimulus waveforms in evoking VEMPs: significance of stimulus energy and frequency. J Vestib Res 19:33–40

    PubMed  Google Scholar 

  • Rosengren SM, Todd NPM, Colebatch JG (2009b) Vestibular evoked myogenic potentials evoked by interaural head acceleration: properties and possible origin. J Appl Physiol 107:841–852

    Article  PubMed  Google Scholar 

  • Rosengren SM, Govender S, Colebatch JG (2011) Ocular and cervical vestibular evoked myogenic potentials produced by air- and bone-conducted stimuli: comparative properties and effects of age. Clin Neurophysiol 122(11):2282–2289

    Article  PubMed  Google Scholar 

  • Snapp HA, Morgenstein KE, Telischi FF, Angeli S (2016) Transcranial attenuation in patients with single-sided deafness. Audiol Neuro-Otol 21(4):237–243

    Article  Google Scholar 

  • Songer JE, Eatock RA (2013) Tuning and timing in mammalian type I hair cells and calyceal synapses. J Neurosci 33:3706–3724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Soto E, Vega R, Budelli R (2002) The receptor potential in type I and type II vestibular system hair cells: a model analysis. Hear Res 165:35–47

    Article  PubMed  CAS  Google Scholar 

  • Stenfelt S (2012) Transcranial attenuation of bone-conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Otol Neurotol 33(2):105–114

    Article  PubMed  Google Scholar 

  • Todd NP, Cody FW, Banks JR (2000) A saccular origin of frequency tuning in myogenic vestibular evoked potentials? Implications for human responses to loud sounds. Hear Res 141:180–188

    Article  PubMed  CAS  Google Scholar 

  • Todd NP, Rosengren SM, Colebatch JG (2009) A utricular origin of frequency tuning to low-frequency vibration in the human vestibular system? Neurosci Lett 451:175–180

    Article  PubMed  CAS  Google Scholar 

  • Todd NP, Rosengren SM, Govender S, Colebatch JG (2010) Single trial detection of human vestibular evoked myogenic potentials is determined by signal-to-noise ratio. J Appl Physiol 109:53–59

    Article  PubMed  Google Scholar 

  • Townsend GL, Cody DT (1971) The averaged inion response evoked by acoustic stimulation: its relation to the saccule. Ann Otol Rhinol Laryngol 80:121–131

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Jeffcoat B, Mustain W, Zhu H, Eby T, Zhou W (2013) Frequency tuning of the cervical vestibular-evoked myogenic potential (cVEMP) recorded from multiple sites along the sternocleidomastoid muscle in normal human subjects. J Assoc Res Otolaryngol 14:37–47

    Article  PubMed  Google Scholar 

  • Welgampola MS, Colebatch JG (2001) Characteristics of tone burst-evoked myogenic potentials in the sternocleidomastoid muscles. Otol Neurotol 22:796–802

    Article  PubMed  CAS  Google Scholar 

  • Welgampola MS, Rosengren SM, Halmagyi GM, Colebatch JG (2003) Vestibular activation by bone conducted sound. J Neurol Neurosurg Psychiatry 74:771–778

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wit HP, Kingma CM (2006) A simple model for the generation of the vestibular evoked myogenic potential (VEMP). Clin Neurophysiol 117:1354–1358

    Article  PubMed  Google Scholar 

  • Yarlagadda RKR (2010) Analog and digital signals and systems. Springer, New York

    Book  Google Scholar 

  • Zilany MS, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Lütkenhöner.

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft (grant LU 342/12-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lütkenhöner, B. Vestibular Evoked Myographic Correlation. JARO 20, 99–114 (2019). https://doi.org/10.1007/s10162-018-00698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-018-00698-9

Keywords

Navigation