Skip to main content
Log in

Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Bilateral cochlear implant (CI) users have poor perceptual sensitivity to interaural time differences (ITDs), which limits their ability to localize sounds and understand speech in noisy environments. This is especially true for high-rate (> 300 pps) periodic pulse trains, which are used as carriers in CI processors. Here, we investigate a novel stimulation strategy in which extra pulses are added to high-rate periodic pulse trains to introduce short inter-pulse intervals (SIPIs). We hypothesized that SIPIs can improve neural ITD sensitivity similarly to the effect observed by randomly jittering IPIs (Hancock et al., J. Neurophysiol. 108:714–28, 2012). To test this hypothesis, we measured ITD sensitivity of single units in the inferior colliculus (IC) of unanesthetized rabbits with bilateral CIs. Introducing SIPIs into high-rate pulse trains significantly increased firing rates for ~ 60 % of IC neurons, and the extra spikes tended to be synchronized to the SIPIs. The additional firings produced by SIPIs uncovered latent ITD sensitivity that was comparable to that observed with low-rate pulse trains. In some neurons, high spontaneous firing rates masked the ITD sensitivity introduced by SIPIs. ITD sensitivity in these neurons could be revealed by emphasizing stimulus-synchronized spikes with a coincidence detection analysis. Overall, these results with SIPIs are consistent with the effects observed previously with jittered pulse trains, with the added benefit of retaining control over the timing and number of SIPIs. A novel CI processing strategy could incorporate SIPIs by inserting them at selected times to high-rate pulse train carriers. Such a strategy could potentially improve ITD perception without degrading speech intelligibility and thereby improve outcomes for bilateral CI users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aronoff JM, Yoon Y-S, Freed DJ, Vermiglio AJ, Pal I, Soli SD (2010) The use of interaural time and level difference cues by bilateral cochlear implant users. J Acoust Soc Am 127:EL87–EL92

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333

    Article  PubMed  Google Scholar 

  • Bartlett EL, Wang X (2007) Neural representations of temporally modulated signals in the auditory thalamus of awake primates. J Neurophysiol 97:1005–1017

    Article  PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026

    Article  PubMed  Google Scholar 

  • Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022

    Article  CAS  PubMed  Google Scholar 

  • Cao X-J, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. J Neurophysiol 97:3961–3975

    Article  PubMed  Google Scholar 

  • Chung Y, Delgutte B, Colburn HS (2015) Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve. J Assoc Res Otolaryngol 16:135–158

    Article  PubMed  Google Scholar 

  • Chung Y, Hancock KE, Delgutte B (2016) Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J Neurosci 36:5520–5531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Hancock KE, Nam S-I, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill TH, Kan A, Goupell MJ, Litovsky RY (2014) Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners. J Acoust Soc Am 136:1246–1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Colburn HS, Chung Y, Zhou Y, Brughera A (2009) Models of brainstem responses to bilateral electrical stimulation. J Assoc Res Otolaryngol 10:91–110

    Article  PubMed  Google Scholar 

  • Colburn HS, Han YA, Culotta CP (1990) Coincidence model of MSO responses. Hear Res 49:335–346

    Article  CAS  PubMed  Google Scholar 

  • Deming WE (1943) Statistical adjustment of data. John Wiley & Sons, New York

  • Dietz M, Wang L, Greenberg D, McAlpine D (2016) Sensitivity to interaural time differences conveyed in the stimulus envelope: estimating inputs of binaural neurons through the temporal analysis of spike trains. J Assoc Res Otolaryngol 17:313–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Fletcher H, Munson WA (1933) Loudness, its definition, measurement and calculation. Bell Labs Tech J 12:377–430

    Article  Google Scholar 

  • Franken TP, Bremen P, Joris PX (2014) Coincidence detection in the medial superior olive: mechanistic implications of an analysis of input spiking patterns. Front Neural Circuits 8:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg J, Brown P (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    Article  CAS  PubMed  Google Scholar 

  • Griffin SJ, Bernstein LR, Ingham NJ, McAlpine D (2005) Neural sensitivity to interaural envelope delays in the inferior colliculus of the guinea pig. J Neurophysiol 93:3463–3478

    Article  PubMed  Google Scholar 

  • Hafter E, Buell T (1990) Restarting the adapted binaural system. J Acoust Soc Am 88:806–812

    Article  CAS  PubMed  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol 14:393–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, Chung Y, McKinney MF, Delgutte B (2017) Temporal envelope coding by inferior colliculus neurons with cochlear implant stimulation. J Assoc Res Otolaryngol 18:771–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil P, Irvine DR (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78:2438–2454

    Article  CAS  PubMed  Google Scholar 

  • Jackson JE (1991) A user’s guide to principal components. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  • Johnson LA, Della Santina CC, Wang X (2017) Representations of Time-Varying Cochlear Implant Stimulation in Auditory Cortex of Awake Marmosets (Callithrix jacchus). J Neurosci 37:7008–7022

  • Joris P, Schreiner C, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577

    Article  CAS  PubMed  Google Scholar 

  • Kan A, Litovsky RY, Goupell MJ (2015) Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users. Ear Hear 36:e62–e68

    Article  PubMed  PubMed Central  Google Scholar 

  • Kan A, Stoelb C, Litovsky RY, Goupell MJ (2013) Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. J Acoust Soc Am 134:2923–2936

    Article  PubMed  PubMed Central  Google Scholar 

  • Klein-Hennig M, Dietz M, Hohmann V, Ewert SD (2011) The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. J Acoust Soc Am 129:3856–3872

    Article  PubMed  Google Scholar 

  • Kuiper NH (1960) Tests concerning random points on a circle. Indag Math 63:38–47

    Article  Google Scholar 

  • Laback B, Egger K, Majdak P (2015) Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 322:138–150

    Article  PubMed  Google Scholar 

  • Laback B, Majdak P (2008) Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci U S A 105:814–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Laback B, Majdak P, Baumgartner W-D (2007) Lateralization discrimination of interaural time delays in four-pulse sequences in electric and acoustic hearing. J Acoust Soc Am 121:2182–2191

    Article  PubMed  Google Scholar 

  • Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM (2011) Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. J Acoust Soc Am 130:1515–1529

    Article  PubMed  Google Scholar 

  • Litovsky RY, Goupell MJ, Godar S, Grieco-Calub T, Jones GL, Garadat SN, Agrawal S, Kan A, Todd A, Hess C, Misurelli S (2012) Studies on bilateral cochlear implants at the University of Wisconsin’s Binaural Hearing and Speech Laboratory. J Am Acad Audiol 23:476–494

    Article  PubMed  PubMed Central  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108:790–802

    Article  CAS  PubMed  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  • Long CJ, Eddington DK, Colburn HS, Rabinowitz WM (2003) Binaural sensitivity as a function of interaural electrode position with a bilateral cochlear implant user. J Acoust Soc Am 114:1565–1574

    Article  PubMed  Google Scholar 

  • Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    Article  CAS  PubMed  Google Scholar 

  • Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mo Z-L, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K(+) currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon BB, Eddington DK, Noel V, Colburn HS (2009) Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. J Acoust Soc Am 126:806–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Riss D, Arnoldner C, Baumgartner W-D, Kaider A, Hamzavi JS (2008) A new fine structure speech coding strategy: speech perception at a reduced number of channels. Otol Neurotol 29:784–788

    Article  PubMed  Google Scholar 

  • Riss D, Hamzavi J, Blineder M et al (2014) FS4, FS4-p, and FSP: a 4-month crossover study of 3 fine structure sound-coding strategies. Ear Hear 35:e272–e281

    Article  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082

    Article  CAS  PubMed  Google Scholar 

  • Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci 25:7887–7895

    Article  CAS  PubMed  Google Scholar 

  • Seeber BU, Fastl H (2008) Localization cues with bilateral cochlear implants. J Acoust Soc Am 123:1030–1042

    Article  PubMed  Google Scholar 

  • Shek J, Wen G, Wisniewski H (1986) Atlas of the rabbit brain and spinal cord. S. Karger AG, Staten Island, NY

    Google Scholar 

  • Shofner WP, Dye RH Jr (1989) Statistical and receiver operating characteristic analysis of empirical spike-count distributions: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoust Soc Am 86:2172–2184

    Article  CAS  PubMed  Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877

    Article  CAS  PubMed  Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667

    Article  CAS  PubMed  Google Scholar 

  • Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZM, Delgutte B (2008) Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 99:2390–2407

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith ZM, Kan A, Jones HG, Buhr-Lawler M, Godar SP, Litovsky RY (2014) Hearing better with interaural time differences and bilateral cochlear implants. J Acoust Soc Am 135:2190–2191

    Article  Google Scholar 

  • Srinivasan S, Laback B, Majdak P, Delgutte B (2018) Introducing short interpulse intervals in high-rate pulse trains enhances binaural timing sensitivity in electric hearing. J Assoc Res Otolaryngol 19:301–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019–11025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svirskis G, Kotak V, Sanes DH, Rinzel J (2004) Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons. J Neurophysiol 91:2465–2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506

    Article  CAS  PubMed  Google Scholar 

  • Tirko NN, Ryugo DK (2012) Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. J Comp Neurol 520:2202–2217

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hoesel R, Böhm M, Pesch J, Vandali A, Battmer RD, Lenarz T (2008) Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J Acoust Soc Am 123:2249–2263

    Article  PubMed  Google Scholar 

  • van Hoesel RJM (2007) Sensitivity to binaural timing in bilateral cochlear implant users. J Acoust Soc Am 121:2192–2206

    Article  PubMed  Google Scholar 

  • van Hoesel RJM (2008) Observer weighting of level and timing cues in bilateral cochlear implant users. J Acoust Soc Am 124:3861–3872

    Article  PubMed  Google Scholar 

  • van Hoesel RJM (2012) Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 288:100–113

    Article  PubMed  Google Scholar 

  • van Hoesel RJM, Jones GL, Litovsky RY (2009) Interaural time-delay sensitivity in bilateral cochlear implant users: effects of pulse rate, modulation rate, and place of stimulation. J Assoc Res Otolaryngol 10:557–567

    Article  PubMed  PubMed Central  Google Scholar 

  • van Hoesel RJM, Tyler RS (2003) Speech perception, localization, and lateralization with bilateral cochlear implants. J Acoust Soc Am 113:1617–1630

    Article  PubMed  Google Scholar 

  • Wang GI, Delgutte B (2012) Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. J Neurophysiol 108:3172–3195

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Camille Shaw and Melissa McKinnon for technical assistance, Michael Kaplan for advice regarding cochlear implantation, and Cochlear Ltd. for providing the cochlear implants.

Funding

This work was supported by NIH grants R01 DC00575 (BD), P30 DC005209, F31 DC014873 (BDB) and the Hearing Health Foundation (Emerging Research Grant, YC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Delgutte.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buechel, B.D., Hancock, K.E., Chung, Y. et al. Improved Neural Coding of ITD with Bilateral Cochlear Implants by Introducing Short Inter-pulse Intervals. JARO 19, 681–702 (2018). https://doi.org/10.1007/s10162-018-00693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-018-00693-0

Keywords

Navigation