Skip to main content

Advertisement

Log in

Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation. Understanding these histological changes is important because selective MVP-driven stimulation of semicircular canals (SCCs) depends on persistence of primary afferent innervation in each SCC crista despite both the primary cause of BVD (e.g., ototoxic injury) and surgical trauma associated with MVP implantation. Retraction of primary afferents out of the cristae and back toward Scarpa’s ganglion would render spatially selective stimulation difficult to achieve and could limit utility of an MVP that relies on electrodes implanted in the lumen of each ampulla. We investigated histopathologic changes of the inner ear associated with intratympanic gentamicin (ITG) injection and/or MVP electrode array implantation in 11 temporal bones from six rhesus macaque monkeys. Hematoxylin and eosin-stained 10-μm temporal bone sections were examined under light microscopy for four treatment groups: normal (three ears), ITG-only (two ears), MVP-only (two ears), and ITG + MVP (four ears). We estimated vestibular hair cell (HC) surface densities for each sensory neuroepithelium and compared findings across end organs and treatment groups. In ITG-only, MVP-only, and ITG + MVP ears, we observed decreased but persistent ampullary nerve fibers of SCC cristae despite ITG treatment and/or MVP electrode implantation. ITG-only and ITG + MVP ears exhibited neuroepithelial thinning and loss of type I HCs in the cristae but little effect on the maculae. MVP-only and ITG + MVP ears exhibited no signs of trauma to the cochlea or otolith end organs except in a single case of saccular injury due to over-insertion of the posterior SCC electrode. While implanted electrodes reached to within 50–760 μm of the target cristae and were usually ensheathed in a thin fibrotic capsule, dense fibrotic reaction and osteoneogenesis were each observed in only one of six electrode tracts examined. Consistent with physiologic studies that have demonstrated directionally appropriate vestibulo-ocular reflex responses to MVP electrical stimulation years after implantation in these animals, histologic findings in the present study indicate that although intralabyrinthine MVP implantation causes some inner ear trauma, it can be accomplished without destroying the distal afferent fibers an MVP is designed to excite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  CAS  PubMed  Google Scholar 

  • Baird RA, Torres MA, Schuff NR (1993) Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Hear Res 65:164–174

    Article  CAS  PubMed  Google Scholar 

  • Brandt T (1996) Bilateral vestibulopathy revisited. Eur J Med Res 1:361–368

    CAS  PubMed  Google Scholar 

  • Carey J (2004) Intratympanic gentamicin for the treatment of Meniere’s disease and other forms of peripheral vertigo. Otolaryngol Clin North Am 37:1075–1090

    Article  PubMed  Google Scholar 

  • Carey J, Della Santina C (2010) Principles of applied vestibular physiology. In: Flint P (ed) Cummings otolaryngology: head and neck surgery. Elsevier, Amsterdam

    Google Scholar 

  • Carey JP, Fuchs AF, Rubel EW (1996) Hair cell regeneration and recovery of the vestibuloocular reflex in the avian vestibular system. J Neurophysiol 76:3301–3312

    CAS  PubMed  Google Scholar 

  • Chia SH, Gamst AC, Anderson JP, Harris JP (2004) Intratympanic gentamicin therapy for Meniere’s disease: a meta-analysis. Otol Neurotol 25:544–552

    Article  PubMed  Google Scholar 

  • Chiang B, Fridman GY, Dai C, Rahman MA, Della Santina CC (2011) Design and performance of a multichannel vestibular prosthesis that restores semicircular canal sensation in rhesus monkey. IEEE Trans Neural Syst Rehabil Eng 19:588–598

    Article  PubMed Central  PubMed  Google Scholar 

  • Crowe SJ, Guild SR, Polvogt LM (1934) Observations on the pathology of high-tone deafness. Bull Johns Hopkins Hosp 54:315

    Google Scholar 

  • Dai C, Fridman GY, Davidovics NS, Chiang B, Ahn JH, Della Santina CC (2011a) Restoration of 3D vestibular sensation in rhesus monkeys using a multichannel vestibular prosthesis. Hear Res 281:74–83

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai C, Fridman GY, Della Santina CC (2011b) Effects of vestibular prosthesis electrode implantation and stimulation on hearing in rhesus monkeys. Hear Res 277:204–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai C, Fridman GY, Chiang B, Rahman MA, Ahn J, Davidovics NS, Della Santina CC (2013) Directional plasticity rapidly improves 3D vestibulo-ocular reflex alignment in monkeys using a multichannel vestibular prosthesis. J Assoc Res Otolaryngol. 2013;14(6):863–877

  • Davidovics NS, Fridman GY, Chiang B, Della Santina CC (2011) Effects of biphasic current pulse frequency, amplitude, duration, and interphase gap on eye movement responses to prosthetic electrical stimulation of the vestibular nerve. Neural Syst Rehabil Eng IEEE Trans on 19:84–94

    Article  Google Scholar 

  • Davidovics N, Rahman M, Dai C, Ahn J, Fridman G, Della Santina C (2013) Multichannel vestibular prosthesis employing modulation of pulse rate and current with alignment precompensation elicits improved VOR performance in monkeys. J Assoc Res Otolaryngol 14:233–248

    Article  PubMed Central  PubMed  Google Scholar 

  • Della Santina C, Migliaccio A, Patel A (2005) Electrical stimulation to restore vestibular function development of a 3-d vestibular prosthesis. Conf Proc IEEE Eng Med Biol Soc 7:7380–7385

    PubMed Central  PubMed  Google Scholar 

  • Della Santina CC, Migliaccio AA, Patel AH (2007a) A multi-channel semicircular canal neural prosthesis using electrical stimulation to restore 3D vestibular sensation. IEEE Trans Biomed Eng 54:1016–1030

    Article  PubMed Central  PubMed  Google Scholar 

  • Della Santina CC, Migliaccio AA, Patel AH (2007b) A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-d vestibular sensation. IEEE Trans Biomed Eng 54:1016–1030

    Article  PubMed Central  PubMed  Google Scholar 

  • Desai SS, Zeh C, Lysakowski A (2005a) Comparative morphology of rodent vestibular periphery. I. Saccular and utricular maculae. J Neurophysiol 93:251–266

    Article  PubMed  Google Scholar 

  • Desai SS, Ali H, Lysakowski A (2005b) Comparative morphology of rodent vestibular periphery. II. Cristae ampullares. J Neurophysiol 93:267–280

    Article  PubMed  Google Scholar 

  • Fernandez C, Lysakowski A, Goldberg JM (1995) Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. J Neurophysiol 73:1253–1269

    CAS  PubMed  Google Scholar 

  • Fridman GY, Davidovics NS, Dai C, Migliaccio AA, Della Santina CC (2010) Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment. J Assoc Res Otolaryngol 11:367–381

    Article  PubMed Central  PubMed  Google Scholar 

  • Gacek RR, Gacek MR (2002) Results of singular neurectomy in the posterior ampullary recess. ORL J Otorhinolaryngol Relat Spec 64:397–402

    Article  PubMed  Google Scholar 

  • Golub JS, Tong L, Ngyuen TB, Hume CR, Palmiter RD, Rubel EW, Stone JS (2012) Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 32:15093–15105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golub JS, Ling L, Nie K, Nowack A, Shepherd SJ, Bierer SM, Jameyson E, Kaneko CR, Phillips JO, Rubinstein JT (2014) Prosthetic implantation of the human vestibular system. Otol Neurotol 35:136–147

    Article  PubMed Central  PubMed  Google Scholar 

  • Gong W, Merfeld DM (2000) Prototype neural semicircular canal prosthesis using patterned electrical stimulation. Ann Biomed Eng 28:572–581

    Article  CAS  PubMed  Google Scholar 

  • Gong W, Merfeld DM (2002) System design and performance of a unilateral horizontal semicircular canal prosthesis. IEEE Trans Biomed Eng 49:175–181

    Article  PubMed  Google Scholar 

  • Gopen Q, Lopez I, Ishiyama G, Baloh RW, Ishiyama A (2003) Unbiased stereologic type I and type II hair cell counts in human utricular macula. Laryngoscope 113:1132–1138

    Article  PubMed  Google Scholar 

  • Guyot J-P, Sigrist A, Pelizzone M, Kos MI (2011) Adaptation to steady-state electrical stimulation of the vestibular system in humans. Ann Otol Rhinol Laryngol 120:143–149

    Article  PubMed  Google Scholar 

  • Hirvonen TP, Minor LB, Hullar TE, Carey JP (2005) Effects of intratympanic gentamicin on vestibular afferents and hair cells in the chinchilla. J Neurophysiol 93:643–655

    Article  PubMed  Google Scholar 

  • Igarashi M, McLeod ME, Graybiel A (1965) Clinical pathological correlations in squirrel monkeys after suppression of semicircular canal function by streptomycin sulfate. Acta Otolaryngol. 1966;Suppl 214:1–28

  • Ishiyama G, Lopez I, Baloh RW, Ishiyama A (2007) Histopathology of the vestibular end organs after intratympanic gentamicin failure for Meniere’s disease. Acta Otolaryngol 127:34–40

    Article  PubMed  Google Scholar 

  • Kim HJ, Lee JO, Koo JW, Kim JS, Ban J (2013) Gentamicin-induced bilateral vestibulopathy in rabbits: vestibular dysfunction and histopathology. Laryngoscope 123:E51–58

    Article  PubMed  Google Scholar 

  • Kos MI, Feigl G, Anderhuber F, Wall C, Fasel JH, Guyot JP (2006) Transcanal approach to the singular nerve. Otol Neurotol 27:542–546

    Article  PubMed  Google Scholar 

  • Lewis RF, Haburcakova C, Gong W, Makary C, Merfeld DM (2010) Vestibuloocular reflex adaptation investigated with chronic motion-modulated electrical stimulation of semicircular canal afferents. J Neurophysiol 103:1066–1079

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindeman HH (1969) Regional differences in sensitivity of the vestibular sensory epithelia to ototoxic antibiotics. Acta Otolaryngol 67:177–189

    Article  CAS  PubMed  Google Scholar 

  • Lopez I, Honrubia V, Lee SC, Schoeman G, Beykirch K (1997) Quantification of the process of hair cell loss and recovery in the chinchilla crista ampullaris after gentamicin treatment. Int J Dev Neurosci 15:447–461

    Article  CAS  PubMed  Google Scholar 

  • Lopez I, Ishiyama G, Tang Y, Tokita J, Baloh RW, Ishiyama A (2005) Regional estimates of hair cells and supporting cells in the human crista ampullaris. J Neurosci Res 82:421–431

    Article  CAS  PubMed  Google Scholar 

  • Lyford-Pike S, Vogelheim C, Chu E, Della Santina CC, Carey JP (2007) Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration. J Assoc Res Otolaryngol 8:497–508

    Article  PubMed Central  PubMed  Google Scholar 

  • Lysakowski A, Goldberg JM (2008) Ultrastructural analysis of the cristae ampullares in the squirrel monkey (Saimiri sciureus). J Comp Neurol 511:47–64

    Article  PubMed Central  PubMed  Google Scholar 

  • Merchant SN (1999) A method for quantitative assessment of vestibular otopathology. Laryngoscope 109:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Merchant SN, Velazquez-Villasenor L, Tsuji K, Glynn RJ, Wall C 3rd, Rauch SD (2000) Temporal bone studies of the human peripheral vestibular system. Normative vestibular hair cell data. Ann Otol Rhinol Laryngol Suppl 181:3–13

    CAS  PubMed  Google Scholar 

  • Minor LB (1998) Gentamicin-induced bilateral vestibular hypofunction. JAMA 279:541–544

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DE, Dai C, Rahman MA, Ahn JH, Della Santina CC, Cullen KE (2013) Head movements evoked in alert rhesus monkey by vestibular prosthesis stimulation: implications for postural and gaze stabilization. PLoS One 8:e78767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nadol JJ (1981) Histopathology of human aminoglycoside ototoxicity. In: Lerner S, Matz G, Hawkins JJ (eds) Aminoglycoside ototoxicity. Little, Brown, Boston, pp 409–435

    Google Scholar 

  • Nadol JB Jr, Eddington DK (2006) Histopathology of the inner ear relevant to cochlear implantation. Adv Otorhinolaryngol 64:31–49

    PubMed  Google Scholar 

  • Nadol JB Jr, Eddington DK, Burgess BJ (2008) Foreign body or hypersensitivity granuloma of the inner ear after cochlear implantation: one possible cause of a soft failure? Otol Neurotol 29:1076–1084

    Article  PubMed Central  PubMed  Google Scholar 

  • Nguyen KD, Minor LB, Della Santina CC, Carey JP (2009) Vestibular function and vertigo control after intratympanic gentamicin for Ménière’s disease. Audiol Neurotol 14:361–372

    Article  Google Scholar 

  • O’Leary SJ, Monksfield P, Kel G, Connolly T, Souter MA, Chang A, Marovic P, O’Leary JS, Richardson R, Eastwood H (2013) Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res 298:27–35

    Article  PubMed  Google Scholar 

  • Perez Fornos A, Guinand N, van de Berg R, Stokroos R, Micera S, Kingma H, Pelizzone M, Guyot JP (2014) Artificial balance: restoration of the vestibulo-ocular reflex in humans with a prototype vestibular neuroprosthesis. Front Neurol 5:66

    Article  PubMed Central  PubMed  Google Scholar 

  • Rauch SD, Velazquez-Villasenor L, Dimitri PS, Merchant SN (2001) Decreasing hair cell counts in aging humans. Ann N Y Acad Sci 942:220–227

    Article  CAS  PubMed  Google Scholar 

  • Richter E (1980) Quantitative study of human Scarpa’s ganglion and vestibular sensory epithelia. Acta Otolaryngol 90:199–208

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein JT (2014) Human longitudinal studies of electrical stimulation of the vestibular periphery. In 13th International Conference on Cochlear Implants and Other Implantable Auditory Technologies, Munich

    Google Scholar 

  • Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, Newlands S, Santos F, Risi F, Abbas PJ et al (2012) Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otol Neurotol 33:789–796

    Article  PubMed Central  PubMed  Google Scholar 

  • Schuknecht H (1993) Pathology of the ear. Lea & Febiger, Philadelphia

    Google Scholar 

  • Sera K, Harada Y, Tagashira N, Suzuki M, Hirakawa K, Ohya T (1987) Morphological changes in the vestibular epithelia and ganglion induced by ototoxic drug. Scanning Microsc 1:1191–1197

    CAS  PubMed  Google Scholar 

  • Severinsen SA, Sorensen MS, Kirkegaard M, Nyengaard JR (2010) Stereological estimation of total cell numbers in the young human utricular macula. Acta Otolaryngol 130:773–779

    Article  PubMed  Google Scholar 

  • Shepherd RK, Webb RL, Clark GM, Pyman BC, Hirshorn MS, Murray MT, Houghton ME (1984) Implanted material tolerance studies for a multiple-channel cochlear prosthesis. Acta Otolaryngol Suppl 411:71–81

    Article  CAS  PubMed  Google Scholar 

  • Sterio DC (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. J Microsc 134:127–136

    Article  CAS  PubMed  Google Scholar 

  • Stokroos R, van de Berg R, Perez-Fornos A, Guinand N, Kingma H, Guyot J (2014) Vestibular implant surgery: progression and pitfalls. In 13th International Conference on Cochlear Implants and Other Implantable Auditory Technologies, Munich

    Google Scholar 

  • Sun DQ, Ward BK, Semenov YR, Carey JP, Della Santina CC (2014) Bilateral vestibular deficiency: quality of life and economic implications. JAMA Otolaryngol Head Neck Surg 140(6):527–534

  • Tien HC, Linthicum FH Jr (2002) Histopathologic changes in the vestibule after cochlear implantation. Otolaryngol Head Neck Surg 127:260–264

    Article  PubMed  Google Scholar 

  • Tsuji K, Velazquez-Villasenor L, Rauch SD, Glynn RJ, Wall C 3rd, Merchant SN (2000) Temporal bone studies of the human peripheral vestibular system. Aminoglycoside ototoxicity. Ann Otol Rhinol Laryngol 109:20–25

    Google Scholar 

  • Uchino Y, Isu N, Ichikawa T, Satoh S, Watanabe S (1988) Properties and localization of the anterior semicircular canal-activated vestibulocollic neurons in the cat. Exp Brain Res 71:345–352

    Article  CAS  PubMed  Google Scholar 

  • van de Berg R, Guinand N, Guyot JP, Kingma H, Stokroos RJ (2012) The modified ampullar approach for vestibular implant surgery: feasibility and its first application in a human with a long-term vestibular loss. Front Neurol 3:18

    Article  PubMed Central  PubMed  Google Scholar 

  • Wall C 3rd, Merfeld DM, Rauch SD, Black FO (2002) Vestibular prostheses: the engineering and biomedical issues. J Vestib Res 12:95–113

    PubMed  Google Scholar 

  • Wall C 3rd, Kos MI, Guyot JP (2007) Eye movements in response to electric stimulation of the human posterior ampullary nerve. Ann Otol Rhinol Laryngol 116:369–374

    Article  PubMed  Google Scholar 

  • Wersall J, Hawkins JE Jr (1962) The vestibular sensory epithelia in the cat labyrinth and their reactions in chronic streptomycin intoxication. Acta Otolaryngol 54:1–23

    Article  CAS  PubMed  Google Scholar 

  • Wilson VJ, Yamagata Y, Yates BJ, Schor RH, Nonaka S (1990) Response of vestibular neurons to head rotations in vertical planes. III. Response of vestibulocollic neurons to vestibular and neck stimulation. J Neurophysiol 64:1695–1703

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Custom electrode arrays for this study were produced by Roland Hessler (MedEl GmbH) and Frank Risi (Cochlear Corp.), to whom the authors express their gratitude. This work was funded by the National Institute on Deafness and Other Communication Disorders (NIDCD) R01DC009255, R01DC002390, and P30DC005211 and by contributors to the Johns Hopkins Vestibular NeuroEngineering Lab Research Fund.

Conflict of Interest

CCDS holds an equity interest in and is an officer of Labyrinth Devices, LLC. He has been a consultant to Cochlear Corporation and is currently a consultant to MedEl GmbH and Novartis Institutes for BioMedical Research, Inc. The terms of these arrangements are managed by The Johns Hopkins University Office of Policy Coordination in accordance with university policies on potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Q. Sun.

Appendix

Appendix

Fig. 7
figure 7

Electrode array placement. A Posterolateral view of 3D CT surface reconstruction showing electrode array leads implanted in the left labyrinth of a rhesus monkey via the mastoid cavity. a lead to anterior and horizontal ampullae; b lead to posterior ampulla; c common crus reference electrode; d neck reference electrode; M mandibular ramus; Z zygomatic arch; ANT, POST, SUP, INF anterior, posterior, superior, inferior. B Oblique CT cut through the plane of the basal turn of the cochlea [Co], showing bifurcated electrode array [a] entering the ampullae of the superior [s-scc] and horizontal [h-scc] semicircular canals. Part of the neck reference electrode [d] is also visible, but the posterior SCC electrode array is not included in this section. AM, PL anteromedial, posterolateral. C Image of forked electrode arrays for h-scc and s-scc ampullas (1), posterior SCC (2), and common crus reference (inset) electrodes. A and B reproduced with permission from Dai et al. 2011b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D.Q., Lehar, M., Dai, C. et al. Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation. JARO 16, 373–387 (2015). https://doi.org/10.1007/s10162-015-0515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0515-y

Keywords

Navigation