Skip to main content
Log in

Statistical inference of semidefinite programming

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper we consider covariance structural models with which we associate semidefinite programming problems. We discuss statistical properties of estimates of the respective optimal value and optimal solutions when the ‘true’ covariance matrix is estimated by its sample counterpart. The analysis is based on perturbation theory of semidefinite programming. As an example we consider asymptotics of the so-called minimum trace factor analysis. We also discuss the minimum rank matrix completion problem and its SDP counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. As it was pointed before, the constraints in (2.20) are invariant with respect to replacing matrix E by matrix ET for an arbitrary nonsingular \((p-r)\times (p-r)\) matrix T. Therefore, unless stated otherwise, for the sake of computational convenience we assume that matrix E has orthonormal columns.

  2. The index set \(\tau \subset \{1,\ldots ,p\}\times \{1,\ldots ,p\}\) is symmetric in the sense that if \((i,j)\in \tau \), then \((j,i)\in \tau \), and is formed by such (ij) that \((i,j-n_1)\in \iota \) for \(1\le i\le n_1\) and \(n_1+1\le j\le n_1+n_2\), and the respective (ji) otherwise.

  3. In case of normally distributed population the covariance matrix \(\varGamma \) is completely defined by the respective matrix \(\varSigma _0\) (see (3.1)). In general, components of \(\varGamma \) can be estimated by the respective estimates of fourth order moments.

References

  1. Alizadeh, F., Haeberly, J., Overton, M.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 129–162 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, V., Gusein-Zade, S., Varchenko, A.: Singularities of Differentiable Maps, vol. 1. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  3. Bentler, P.: Lower-bound method for the dimension-free measurement of internal consistency. Soc. Sci. Res. 1, 343–357 (1972)

    Article  Google Scholar 

  4. Bonnans, J., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    Book  MATH  Google Scholar 

  5. Browne, M.: Generalized least squares estimators in the analysis of covariance structures. S. Afr. Stat. J. 8, 1–24 (1974)

    MathSciNet  MATH  Google Scholar 

  6. Candés, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandrasekaran, V., Sanghavi, S., Parilo, P., Willsky, A.: Rank-sparsity incoherence for matrix decomposition. SIAM J. Optim. 21, 572–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dür, M., Jargalsaikhan, B., Still, G.: Genericity results in linear conic programming—a tour d’horizon. Math. Oper. Res. 42, 77–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  10. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    Book  MATH  Google Scholar 

  11. Helmke, U., Moore, J.: Optimization and Dynamical Systems, 2nd edn. Springer, London (1996)

    MATH  Google Scholar 

  12. Robinson, S.: Local structure of feasible sets in nonlinear programming II: mondegeneracy. Math. Program. Study 22, 217–230 (1984)

    Article  MATH  Google Scholar 

  13. Scheinberg, K.: Handbook of semidefinite programming. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Parametric Linear Semidefinite Programming, Chap. 4, pp. 93–110. Kluwer Academic Publishers, Boston (2000)

    Google Scholar 

  14. Shapiro, A.: Rank reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis. Psychometrika 47, 187–199 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shapiro, A.: Weighted minimum trace factor analysis. Psychometrika 47, 243–264 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shapiro, A.: Extremal problems on the set of nonnegative definite matrices. Linear Algebra Appl. 67, 7–18 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77, 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Shapiro, A.: Duality, optimality conditions, and perturbation analysis. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.) Handbook of Semidefinite Programming, Chap. 4, pp. 67–92. Kluwer Academic Publishers, Boston (2000)

    Chapter  Google Scholar 

  19. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory, 2nd edn. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  20. Shapiro, A., Fan, M.: On eigenvalue optimization. SIAM J. Optim. 5, 552–569 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shapiro, A., Ten Berge, J.: Statistical inference of minimum rank factor analysis. Psychometrika 67, 79–94 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ten Berge, J., Snijders, T., Zegers, F.: Computational aspects of the greatest lower bound to the reliability and constrained minimum trace factor analysis. Psychometrika 46, 201–213 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to anonymous referees for constructive comments which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shapiro.

Additional information

This research was partly supported by NSF grant 1633196 and DARPA EQUiPS program grant SNL 014150709.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, A. Statistical inference of semidefinite programming. Math. Program. 174, 77–97 (2019). https://doi.org/10.1007/s10107-018-1250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1250-z

Keywords

Mathematics Subject Classification

Navigation