Skip to main content

Advertisement

Log in

Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of photodynamic inactivation (PDI) on Candida albicans biofilms, evaluating its effects on gene expression of ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 by yeast. Three samples of C. albicans were used in this study: a clinical sample from a patient with HIV (39S), a clinical sample from a patient with denture stomatitis lesion (Ca30), and a standard strain ATCC 18804. The quantification of gene expression was related to the production of those genes in the samples referred above using quantitative polymerase chain reaction (qPCR) assay in real time. The photosensitizer methylene blue at 300 uM and erythrosine at 400 uM, sensitized with low-power laser (visible red, 660 nm) and green LED (532 nm), respectively, were used for PDI. Four groups of each sample and PDI protocol were evaluated: (a) P+L+: sensitization with the photosensitizer and irradiation with light, (b) P+L−: only treatment with the photosensitizer, (c) P−L+: only irradiation with light, and (d) P−L−: without sensitization with the dye and absence of light. The results were analyzed by t test, with a significance level of 5%. The photodynamic inactivation was able to reduce the expression of all genes for both treatments, laser and LED. The fold-decrease for the genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 were 0.73, 0.39, 0.77, 0.71, 0.67, and 0.60 for laser, respectively, and 0.66, 0.61, .050, 0.43, 0.54, and 0.66 for LED, respectively. It could be concluded that PDI showed a reduction in the expression of C. albicans genes, suggesting its virulence decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 20(Suppl 6):5–10. https://doi.org/10.1111/1469-0691.12539

    Article  Google Scholar 

  2. Bassetti M, Merelli M, Ansaldi F, de Florentiis D, Sartor A, Scarparo C, Callegari A, Righi E (2015) Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS One 10(5):e0127534. https://doi.org/10.1371/journal.pone.0127534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Underhill D, Iliev I (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14(6):405–416. https://doi.org/10.1038/nri3684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Seddiki S, Boucherit-Otmani Z, Boucherit K, Kunkel D (2015) Fungal infectivities of implanted catheters due to Candida sp. biofilms formation and resistance. Journal de mycologie medicale 25(2):130–135. https://doi.org/10.1016/j.mycmed.2015.03.003

    Article  PubMed  CAS  Google Scholar 

  5. Darwazeh A, Al-Dwairi Z, Al-Zwairi A (2010) The relationship between tobacco smoking and oral colonization with Candida species. J Contemp Dent Pract 11(3):017–024

    PubMed  Google Scholar 

  6. Lazarin A, Zamperini C, Vergani C, Wady A, Giampaolo E, Machado A (2014) Candida albicans adherence to an acrylic resin modified by experimental photopolymerised coatings: an in vitro study. Gerodontology 31(1):25–33. https://doi.org/10.1111/j.1741-2358.2012.00688.x

    Article  PubMed  Google Scholar 

  7. Gleiznys A, Zdanaviciene E, Zilinskas J (2015) Candida albicans importance to denture wearers. A literature review. Stomatologija 17(2):54–66

    PubMed  Google Scholar 

  8. Martins CH, Pires RH, Cunha AO, Pereira C, Singulani Jde L, Abrao F, Moraes T, Mendes-Giannini MJ (2016) Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm. Fungal biology 120(4):530–537. https://doi.org/10.1016/j.funbio.2016.01.013

    Article  PubMed  Google Scholar 

  9. Coogan MM, Fidel PL Jr, Komesu MC, Maeda N, Samaranayake L (2006) (B1) Candida and mycotic infections. Adv Dent Res 19(1):130–138. https://doi.org/10.1177/154407370601900124

    Article  PubMed  CAS  Google Scholar 

  10. Samaranayake YH, Samaranayake LP (2001) Experimental oral candidiasis in animal models. Clin Microbiol Rev 14(2):398–429. https://doi.org/10.1128/CMR.14.2.398-429.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Gaitan-Cepeda LA, Martinez-Gonzalez M, Ceballos-Salobrena A (2005) Oral candidosis as a clinical marker of immune failure in patients with HIV/AIDS on HAART. AIDS Patient Care STDs 19(2):70–77. https://doi.org/10.1089/apc.2005.19.70

    Article  PubMed  Google Scholar 

  12. Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontology 2000(49):39–59. https://doi.org/10.1111/j.1600-0757.2008.00291.x

    Article  Google Scholar 

  13. Maheshwari M, Kaur R, Chadha S (2016) Candida species prevalence profile in HIV seropositive patients from a Major Tertiary Care Hospital in New Delhi, India. Journal of pathogens 2016:6204804. https://doi.org/10.1155/2016/6204804

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83(1):34–38. https://doi.org/10.1016/j.jphotobiol.2005.12.002

    Article  PubMed  CAS  Google Scholar 

  15. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25(3):385–389. https://doi.org/10.1007/s10103-009-0706-z

    Article  PubMed  Google Scholar 

  16. Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26(3):341–348. https://doi.org/10.1007/s10103-010-0852-3

    Article  PubMed  Google Scholar 

  17. Freire F, Costa AC, Pereira CA, Beltrame Junior M, Junqueira JC, Jorge A (2014) Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers Med Sci 29(3):949–955. https://doi.org/10.1007/s10103-013-1435-x

    Article  PubMed  Google Scholar 

  18. Freire F, Ferraresi C, Jorge AO, Hamblin MR (2016) Photodynamic therapy of oral Candida infection in a mouse model. J Photochem Photobiol B 159:161–168. https://doi.org/10.1016/j.jphotobiol.2016.03.049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Luo S, Hipler UC, Munzberg C, Skerka C, Zipfel PF (2015) Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates. PLoS One 10(2):e0113192. https://doi.org/10.1371/journal.pone.0113192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Junqueira JC, Vilela SF, Rossoni RD, Barbosa JO, Costa AC, Rasteiro VM, Suleiman JM, Jorge AO (2012) Oral colonization by yeasts in HIV-positive patients in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 54(1):17–24

    Article  PubMed  Google Scholar 

  21. Pereira CA, Toledo BC, Santos CT, Pereira Costa AC, Back-Brito GN, Kaminagakura E, Jorge A (2013) Opportunistic microorganisms in individuals with lesions of denture stomatitis. Diagn Microbiol Infect Dis 76(4):419–424. https://doi.org/10.1016/j.diagmicrobio.2013.05.001

    Article  PubMed  Google Scholar 

  22. Seneviratne CJ, Jin L, Samaranayake L (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 14(7):582–590. https://doi.org/10.1111/j.1601-0825.2007.01424.x

    Article  PubMed  CAS  Google Scholar 

  23. Costa AC, Pereira CA, Freire F, Junqueira JC, Jorge A (2013) Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses 56(6):614–622. https://doi.org/10.1111/myc.12092

    Article  PubMed  Google Scholar 

  24. Silver N, Best S, Jiang J, Thein S (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33. https://doi.org/10.1186/1471-2199-7-33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  PubMed  CAS  Google Scholar 

  26. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250. https://doi.org/10.1158/0008-5472.can-04-0496

    Article  PubMed  CAS  Google Scholar 

  27. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3 (7):RESEARCH0034

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  29. Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25. https://doi.org/10.1186/1471-2199-7-25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schock U, Stark A, Kuchler K (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8(12):e1003118. https://doi.org/10.1371/journal.pgen.1003118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP (2012) Portrait of Candida albicans adherence regulators. PLoS Pathog 8(2):e1002525. https://doi.org/10.1371/journal.ppat.1002525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A (2015) Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal genetics and biology : FG & B 83:45-57. doi:https://doi.org/10.1016/j.fgb.2015.08.004

  33. Nailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H, Coenye T (2010) Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114. https://doi.org/10.1186/1471-2180-10-114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and molecular biology reviews : MMBR 67(3):400–428 table of contents

    Article  PubMed  CAS  Google Scholar 

  35. Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7(4):336–341. https://doi.org/10.1016/j.mib.2004.06.003

    Article  PubMed  CAS  Google Scholar 

  36. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128. https://doi.org/10.4161/viru.22913

    Article  PubMed  PubMed Central  Google Scholar 

  37. Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9(2):109–118. https://doi.org/10.1038/nrmicro2475

    Article  PubMed  CAS  Google Scholar 

  38. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Current biology : CB 18(14):1017–1024. https://doi.org/10.1016/j.cub.2008.06.034

    Article  PubMed  CAS  Google Scholar 

  39. Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Current biology : CB 15(12):1150–1155. https://doi.org/10.1016/j.cub.2005.05.047

    Article  PubMed  CAS  Google Scholar 

  40. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  PubMed  CAS  Google Scholar 

  41. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284. https://doi.org/10.1038/sj.gene.6364190

    Article  PubMed  CAS  Google Scholar 

  42. Haberhausen G, Pinsl J, Kuhn CC, Markert-Hahn C (1998) Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J Clin Microbiol 36(3):628–633

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2-3):291–295

    Article  PubMed  CAS  Google Scholar 

  44. Costa AC, Rasteiro VM, Pereira CA, Rossoni RD, Junqueira JC, Jorge AO (2012) The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses 55(1):56–63. https://doi.org/10.1111/j.1439-0507.2011.02042.x

    Article  PubMed  CAS  Google Scholar 

  45. Freire F, de Barros PP, da Silva Avila D, Brito GN, Junqueira JC, Jorge AO (2015) Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers Med Sci 30(5):1511–1518. https://doi.org/10.1007/s10103-015-1747-0

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Scholarship 2013/22897-2), in order to finance Freire’s doctoral Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Freire.

Ethics declarations

Ethical approval

The research project for the collection of clinical samples was approved by the Ethics Committee of the Institute of Infectology Emílio Ribas, São Paulo, Brazil (274/2009) [20] and the Ethics Committee of Institute of the São Paulo State University (Unesp), Institute of Science and Technology (012/2010-PH / CEP) [21].

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freire, F., de Barros, P.P., Pereira, C.A. et al. Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms. Lasers Med Sci 33, 1447–1454 (2018). https://doi.org/10.1007/s10103-018-2487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2487-8

Keywords

Navigation