Advertisement

Lasers in Medical Science

, Volume 33, Issue 7, pp 1447–1454 | Cite as

Photodynamic inactivation in the expression of the Candida albicans genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 in biofilms

  • Fernanda Freire
  • Patrícia Pimentel de Barros
  • Cristiane Aparecida Pereira
  • Juliana Campos Junqueira
  • Antonio Olavo Cardoso Jorge
Original Article

Abstract

The objective of this study was to evaluate the effects of photodynamic inactivation (PDI) on Candida albicans biofilms, evaluating its effects on gene expression of ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 by yeast. Three samples of C. albicans were used in this study: a clinical sample from a patient with HIV (39S), a clinical sample from a patient with denture stomatitis lesion (Ca30), and a standard strain ATCC 18804. The quantification of gene expression was related to the production of those genes in the samples referred above using quantitative polymerase chain reaction (qPCR) assay in real time. The photosensitizer methylene blue at 300 uM and erythrosine at 400 uM, sensitized with low-power laser (visible red, 660 nm) and green LED (532 nm), respectively, were used for PDI. Four groups of each sample and PDI protocol were evaluated: (a) P+L+: sensitization with the photosensitizer and irradiation with light, (b) P+L−: only treatment with the photosensitizer, (c) P−L+: only irradiation with light, and (d) P−L−: without sensitization with the dye and absence of light. The results were analyzed by t test, with a significance level of 5%. The photodynamic inactivation was able to reduce the expression of all genes for both treatments, laser and LED. The fold-decrease for the genes ALS3, HWP1, BCR1, TEC1, CPH1, and EFG1 were 0.73, 0.39, 0.77, 0.71, 0.67, and 0.60 for laser, respectively, and 0.66, 0.61, .050, 0.43, 0.54, and 0.66 for LED, respectively. It could be concluded that PDI showed a reduction in the expression of C. albicans genes, suggesting its virulence decrease.

Keywords

Biofilms Virulence factors Real-time PCR Photodynamic inactivation Candida albicans 

Notes

Funding information

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil (Scholarship 2013/22897-2), in order to finance Freire’s doctoral Project.

Compliance with ethical standards

Ethical approval

The research project for the collection of clinical samples was approved by the Ethics Committee of the Institute of Infectology Emílio Ribas, São Paulo, Brazil (274/2009) [20] and the Ethics Committee of Institute of the São Paulo State University (Unesp), Institute of Science and Technology (012/2010-PH / CEP) [21].

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 20(Suppl 6):5–10.  https://doi.org/10.1111/1469-0691.12539 CrossRefGoogle Scholar
  2. 2.
    Bassetti M, Merelli M, Ansaldi F, de Florentiis D, Sartor A, Scarparo C, Callegari A, Righi E (2015) Clinical and therapeutic aspects of candidemia: a five year single centre study. PLoS One 10(5):e0127534.  https://doi.org/10.1371/journal.pone.0127534 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Underhill D, Iliev I (2014) The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol 14(6):405–416.  https://doi.org/10.1038/nri3684 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Seddiki S, Boucherit-Otmani Z, Boucherit K, Kunkel D (2015) Fungal infectivities of implanted catheters due to Candida sp. biofilms formation and resistance. Journal de mycologie medicale 25(2):130–135.  https://doi.org/10.1016/j.mycmed.2015.03.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Darwazeh A, Al-Dwairi Z, Al-Zwairi A (2010) The relationship between tobacco smoking and oral colonization with Candida species. J Contemp Dent Pract 11(3):017–024PubMedGoogle Scholar
  6. 6.
    Lazarin A, Zamperini C, Vergani C, Wady A, Giampaolo E, Machado A (2014) Candida albicans adherence to an acrylic resin modified by experimental photopolymerised coatings: an in vitro study. Gerodontology 31(1):25–33.  https://doi.org/10.1111/j.1741-2358.2012.00688.x CrossRefPubMedGoogle Scholar
  7. 7.
    Gleiznys A, Zdanaviciene E, Zilinskas J (2015) Candida albicans importance to denture wearers. A literature review. Stomatologija 17(2):54–66PubMedGoogle Scholar
  8. 8.
    Martins CH, Pires RH, Cunha AO, Pereira C, Singulani Jde L, Abrao F, Moraes T, Mendes-Giannini MJ (2016) Candida/Candida biofilms. First description of dual-species Candida albicans/C. rugosa biofilm. Fungal biology 120(4):530–537.  https://doi.org/10.1016/j.funbio.2016.01.013 CrossRefPubMedGoogle Scholar
  9. 9.
    Coogan MM, Fidel PL Jr, Komesu MC, Maeda N, Samaranayake L (2006) (B1) Candida and mycotic infections. Adv Dent Res 19(1):130–138.  https://doi.org/10.1177/154407370601900124 CrossRefPubMedGoogle Scholar
  10. 10.
    Samaranayake YH, Samaranayake LP (2001) Experimental oral candidiasis in animal models. Clin Microbiol Rev 14(2):398–429.  https://doi.org/10.1128/CMR.14.2.398-429.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gaitan-Cepeda LA, Martinez-Gonzalez M, Ceballos-Salobrena A (2005) Oral candidosis as a clinical marker of immune failure in patients with HIV/AIDS on HAART. AIDS Patient Care STDs 19(2):70–77.  https://doi.org/10.1089/apc.2005.19.70 CrossRefPubMedGoogle Scholar
  12. 12.
    Samaranayake LP, Keung Leung W, Jin L (2009) Oral mucosal fungal infections. Periodontology 2000(49):39–59.  https://doi.org/10.1111/j.1600-0757.2008.00291.x CrossRefGoogle Scholar
  13. 13.
    Maheshwari M, Kaur R, Chadha S (2016) Candida species prevalence profile in HIV seropositive patients from a Major Tertiary Care Hospital in New Delhi, India. Journal of pathogens 2016:6204804.  https://doi.org/10.1155/2016/6204804 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    de Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83(1):34–38.  https://doi.org/10.1016/j.jphotobiol.2005.12.002 CrossRefPubMedGoogle Scholar
  15. 15.
    Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25(3):385–389.  https://doi.org/10.1007/s10103-009-0706-z CrossRefPubMedGoogle Scholar
  16. 16.
    Pereira CA, Romeiro RL, Costa AC, Machado AK, Junqueira JC, Jorge AO (2011) Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Lasers Med Sci 26(3):341–348.  https://doi.org/10.1007/s10103-010-0852-3 CrossRefPubMedGoogle Scholar
  17. 17.
    Freire F, Costa AC, Pereira CA, Beltrame Junior M, Junqueira JC, Jorge A (2014) Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers Med Sci 29(3):949–955.  https://doi.org/10.1007/s10103-013-1435-x CrossRefPubMedGoogle Scholar
  18. 18.
    Freire F, Ferraresi C, Jorge AO, Hamblin MR (2016) Photodynamic therapy of oral Candida infection in a mouse model. J Photochem Photobiol B 159:161–168.  https://doi.org/10.1016/j.jphotobiol.2016.03.049 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Luo S, Hipler UC, Munzberg C, Skerka C, Zipfel PF (2015) Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates. PLoS One 10(2):e0113192.  https://doi.org/10.1371/journal.pone.0113192 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Junqueira JC, Vilela SF, Rossoni RD, Barbosa JO, Costa AC, Rasteiro VM, Suleiman JM, Jorge AO (2012) Oral colonization by yeasts in HIV-positive patients in Brazil. Revista do Instituto de Medicina Tropical de Sao Paulo 54(1):17–24CrossRefPubMedGoogle Scholar
  21. 21.
    Pereira CA, Toledo BC, Santos CT, Pereira Costa AC, Back-Brito GN, Kaminagakura E, Jorge A (2013) Opportunistic microorganisms in individuals with lesions of denture stomatitis. Diagn Microbiol Infect Dis 76(4):419–424.  https://doi.org/10.1016/j.diagmicrobio.2013.05.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Seneviratne CJ, Jin L, Samaranayake L (2008) Biofilm lifestyle of Candida: a mini review. Oral Dis 14(7):582–590.  https://doi.org/10.1111/j.1601-0825.2007.01424.x CrossRefPubMedGoogle Scholar
  23. 23.
    Costa AC, Pereira CA, Freire F, Junqueira JC, Jorge A (2013) Methods for obtaining reliable and reproducible results in studies of Candida biofilms formed in vitro. Mycoses 56(6):614–622.  https://doi.org/10.1111/myc.12092 CrossRefPubMedGoogle Scholar
  24. 24.
    Silver N, Best S, Jiang J, Thein S (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol 7:33.  https://doi.org/10.1186/1471-2199-7-33 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515CrossRefPubMedGoogle Scholar
  26. 26.
    Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250.  https://doi.org/10.1158/0008-5472.can-04-0496 CrossRefPubMedGoogle Scholar
  27. 27.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3 (7):RESEARCH0034Google Scholar
  28. 28.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods (San Diego, Calif) 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefGoogle Scholar
  29. 29.
    Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ (2006) Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol 7:25.  https://doi.org/10.1186/1471-2199-7-25 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hnisz D, Bardet AF, Nobile CJ, Petryshyn A, Glaser W, Schock U, Stark A, Kuchler K (2012) A histone deacetylase adjusts transcription kinetics at coding sequences during Candida albicans morphogenesis. PLoS Genet 8(12):e1003118.  https://doi.org/10.1371/journal.pgen.1003118 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP (2012) Portrait of Candida albicans adherence regulators. PLoS Pathog 8(2):e1002525.  https://doi.org/10.1371/journal.ppat.1002525 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Maiti P, Ghorai P, Ghosh S, Kamthan M, Tyagi RK, Datta A (2015) Mapping of functional domains and characterization of the transcription factor Cph1 that mediate morphogenesis in Candida albicans. Fungal genetics and biology : FG & B 83:45-57. doi: https://doi.org/10.1016/j.fgb.2015.08.004
  33. 33.
    Nailis H, Kucharikova S, Ricicova M, Van Dijck P, Deforce D, Nelis H, Coenye T (2010) Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114.  https://doi.org/10.1186/1471-2180-10-114 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and molecular biology reviews : MMBR 67(3):400–428 table of contentsCrossRefPubMedGoogle Scholar
  35. 35.
    Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7(4):336–341.  https://doi.org/10.1016/j.mib.2004.06.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128.  https://doi.org/10.4161/viru.22913 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9(2):109–118.  https://doi.org/10.1038/nrmicro2475 CrossRefPubMedGoogle Scholar
  38. 38.
    Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Current biology : CB 18(14):1017–1024.  https://doi.org/10.1016/j.cub.2008.06.034 CrossRefPubMedGoogle Scholar
  39. 39.
    Nobile CJ, Mitchell AP (2005) Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Current biology : CB 15(12):1150–1155.  https://doi.org/10.1016/j.cub.2005.05.047 CrossRefPubMedGoogle Scholar
  40. 40.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622.  https://doi.org/10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  41. 41.
    Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284.  https://doi.org/10.1038/sj.gene.6364190 CrossRefPubMedGoogle Scholar
  42. 42.
    Haberhausen G, Pinsl J, Kuhn CC, Markert-Hahn C (1998) Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J Clin Microbiol 36(3):628–633PubMedPubMedCentralGoogle Scholar
  43. 43.
    Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2-3):291–295CrossRefPubMedGoogle Scholar
  44. 44.
    Costa AC, Rasteiro VM, Pereira CA, Rossoni RD, Junqueira JC, Jorge AO (2012) The effects of rose bengal- and erythrosine-mediated photodynamic therapy on Candida albicans. Mycoses 55(1):56–63.  https://doi.org/10.1111/j.1439-0507.2011.02042.x CrossRefPubMedGoogle Scholar
  45. 45.
    Freire F, de Barros PP, da Silva Avila D, Brito GN, Junqueira JC, Jorge AO (2015) Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers Med Sci 30(5):1511–1518.  https://doi.org/10.1007/s10103-015-1747-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Fernanda Freire
    • 1
  • Patrícia Pimentel de Barros
    • 1
  • Cristiane Aparecida Pereira
    • 1
  • Juliana Campos Junqueira
    • 1
  • Antonio Olavo Cardoso Jorge
    • 1
  1. 1.Department of Biosciences and Oral Diagnosis, São Paulo State University (Unesp)Institute of Science and TechnologySão José dos CamposBrazil

Personalised recommendations