Skip to main content
Log in

Finite element discretization of local minimization schemes for rate-independent evolutions

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

This paper is concerned with a space-time discretization of a rate-independent evolution governed by a non-smooth dissipation and a non-convex energy functional. For the time discretization, we apply the local minimization scheme introduced in Efendiev and Mielke (J Convex Anal 13(1):151–167, 2006), which is known to resolve time discontinuities, which may show up due to the non-convex energy. The spatial discretization is performed by classical linear finite elements. We show that accumulation points of the sequence of discrete solutions for mesh size tending to zero exist and are so-called parametrized solutions of the continuous problem. The discrete problems are solved by means of a mass lumping scheme for the non-smooth dissipation functional in combination with a semi-smooth Newton method. A numerical test indicates the efficiency of this approach. In addition, we compared the local minimization scheme with a time stepping scheme for global energetic solutions, which shows that both schemes yield different solutions with differing time discontinuities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, Boston (1984)

    MATH  Google Scholar 

  2. Efendiev, M.A., Mielke, A.: On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Anal. 13(1), 151–167 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Gaspoz, F.D., Heine, C.-J., Siebert, K.G.: Optimal grading of the newest vertex bisection and \(H^1\)-stability of the \(L^2\)-projection. IMA J. Numer. Anal 36(3), 1217–1241 (2016)

    Article  MathSciNet  Google Scholar 

  4. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Ito, K., Kunisch, K.: Lagrange multiplier approach to variational problems and applications. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  6. Knees, D.: Convergence Analysis in Time-Discretization Schemes for Rate-Independent Systems. Version: (2017)—submitted to ESAIM:COCV. https://arxiv.org/pdf/1712.06851.pdf

  7. Knees, D., Rossi, R., Zanini, C.: A vanishing viscosity approach to a rate-independent damage model. Math. Models Methods Appl. Sci. 23(04), 565–616 (2013)

    Article  MathSciNet  Google Scholar 

  8. Mielke, A.: Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15(4), 351–382 (2003)

    Article  MathSciNet  Google Scholar 

  9. Mielke, A.: Differential, energetic, and metric formulations for rate-independent processes. Nonlinear PDE’s Appl. 2028, 87–167 (2011)

    Article  MathSciNet  Google Scholar 

  10. Mielke, A., Paoli, L., Petrov, A., Stefanelli, U.: Error estimates for space-time discretizations of a rate-independent variational inequality. SIAM J. Numer. Anal. 48(5), 1625–1646 (2010)

    Article  MathSciNet  Google Scholar 

  11. Mielke, A., Roubíc̆ek, T.: Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN 43(3), 399–428 (2009)

    Article  MathSciNet  Google Scholar 

  12. Mielke, A., Roubíc̆ek, T.: Rate-Independent Systems: Theory and Application. Springer, New York (2015)

    Book  Google Scholar 

  13. Mielke, A., Rossi, R., Savaré, G.: BV solutions and viscosity approximations of rate-independent systems. ESAIM: Control Optim. Calc. Var. 18(1), 36–80 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Mielke, A., Rossi, R., Savaré, G.: Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems. J. Eur. Math. Soc. 18, 2107–2165 (2016)

    Article  MathSciNet  Google Scholar 

  15. Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA: Nonlinear Differ. Equ. Appl. 11(2), 151–189 (2004)

    Article  MathSciNet  Google Scholar 

  16. Mielke, A., Zelik, S.: On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(1), 67–135 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Negri, M.: Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics. ESAIM Control Optim. Calc. Var. 20(4), 983–1008 (2014). https://doi.org/10.1051/cocv/2014004

    Article  MathSciNet  MATH  Google Scholar 

  18. Negri, M., Scala, R.: A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal. Real World Appl. 38, 271–305 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dorothee Knees (University of Kassel) for various helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Meyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the German Research Foundation (DFG) under Grant No. HE 6077/8-1 within the priority program Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization (SPP 1962).

Appendices

A Proof of Lemma 3.2

We start the proof of Lemma 3.2 with the following result, which is a direct consequence of the characterization of \(z^{\tau ,h}_k\) as a minimizer of (3.1). (This is actually the only point, where one uses that \(z^{\tau ,h}_k\) is a minimizer and not only a stationary point satisfying (3.3)–(3.6).)

Lemma A.1

(Local energy-inequality) For all \(h,\tau >0\) and all \(k \in {\mathbb {N}}\), the inequality

$$\begin{aligned} {\mathcal {I}}\left( t_{k}^{\tau ,h},z_{k}^{\tau ,h}\right) + {\mathcal {R}}_h\left( z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h}\right) \le {\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k-1}^{\tau ,h}\right) + \int _{t_{k-1}^{\tau ,h}}^{t_{k}^{\tau ,h}} \partial _t{\mathcal {I}}\left( s,z_{k}^{\tau ,h}\right) d s \end{aligned}$$
(A.1)

is valid.

Proof

By optimality of \(z_{k}^{\tau ,h}\) and feasibility of \(z_{k-1}^{\tau ,h}\) for the minimization problem in (3.1), we obtain

$$\begin{aligned} {\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k}^{\tau ,h}\right) + {\mathcal {R}}_h\left( z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h}\right) \le {\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k-1}^{\tau ,h}\right) \end{aligned}$$
(A.2)

Adding \({\mathcal {I}}(t_{k}^{\tau ,h},z_{k}^{\tau ,h})\) on both sides then gives the result. \(\square \)

The local energy inequality is now used to derive the uniform bounds on energy and dissipation in Lemma 3.2.

Proof (of Lemma 3.2)

Again we suppress the superscript \(\tau , h\) in the proof to shorten the notation, except for \(z_0^{\tau ,h}\) in order to avoid confusion with the initial value. Estimating the right hand side in (A.1) by employing (2.4) gives

$$\begin{aligned}&{\mathcal {I}}(t_{k},z_{k}) + {\mathcal {R}}_h\left( z_{k}-z_{k-1}\right) \\&\qquad \le {\mathcal {I}}(t_{k-1},z_{k-1}) + \int _{t_{k-1}}^{t_{k}} \mu ({\mathcal {I}}(t_{k-1},z_{k})+\beta ) \exp (\mu (s-t_{k-1}))d s \\&\qquad = {\mathcal {I}}(t_{k-1},z_{k-1}) + ({\mathcal {I}}(t_{k-1},z_{k})+\beta )( \exp (\mu (t_{k}-t_{k-1}))-1). \end{aligned}$$

Using the non-negativity of \({\mathcal {R}}_h\) by (2.16) in combination with (A.2) yields \({\mathcal {I}}(t_{k-1},z_{k}) \le {\mathcal {I}}(t_{k-1},z_{k-1})\) so that

$$\begin{aligned} \begin{aligned}&{\mathcal {I}}(t_{k},z_{k}) + {\mathcal {R}}_h\left( z_{k}-z_{k-1}\right) \\&\qquad \le {\mathcal {I}}(t_{k-1},z_{k-1}) + ({\mathcal {I}}(t_{k-1},z_{k-1})+\beta )( \exp (\mu (t_{k}-t_{k-1}))-1) \end{aligned} \end{aligned}$$
(A.3)

is obtained. By exploiting once again \({\mathcal {R}}_h \ge 0\), this implies

$$\begin{aligned} {\mathcal {I}}(t_{k},z_{k}) \le ({\mathcal {I}}(t_{k-1},z_{k-1}) + \beta ) \exp (\mu (t_{k} - t_{k-1}))-\beta \end{aligned}$$

such that induction over k already gives the desired result for the energy:

$$\begin{aligned} \begin{aligned} {\mathcal {I}}(t_{k},z_{k})&\le \left( {\mathcal {I}}(0,z_0^{\tau ,h})+\beta \right) \prod _{j=1}^k \exp \left( \mu (t_{j}-t_{j-1})\right) -\beta \\&\le \left( {\mathcal {I}}(0,z_0^{\tau ,h})+\beta \right) \exp (\mu t_{k}) - \beta . \end{aligned} \end{aligned}$$
(A.4)

To include the dissipation in the estimate, we sum up (A.3) to obtain

$$\begin{aligned}&{\mathcal {I}}(t_{k},z_{k}) + \sum _{j=1}^k {\mathcal {R}}_h\left( z_{j}-z_{j-1}\right) \\&\qquad \le {\mathcal {I}}(0,z_0^{\tau ,h}) + \sum _{j=1}^k ({\mathcal {I}}(t_{j-1},z_{j-1})+\beta )(\exp (\mu (t_{j}-t_{j-1}))-1). \end{aligned}$$

Inserting (A.4) and adding \(\beta \) on both sides, we finally obtain

$$\begin{aligned}&{\mathcal {I}}(t_{k},z_{k}) + \sum _{j=1}^k {\mathcal {R}}_h\left( z_{j}-z_{j-1}\right) + \beta \\&\quad \le \left( {\mathcal {I}}(0,z_0^{\tau ,h}) + \beta \right) + \sum _{j=1}^k \left( {\mathcal {I}}(0,z_0^{\tau ,h})+\beta \right) \exp (\mu t_{j-1})(\exp (\mu (t_{j}-t_{j-1}))-1) \\&\qquad = ({\mathcal {I}}(0,z_0^{\tau ,h})+\beta ) \exp (\mu t_{k}) \le \left( {\mathcal {I}}(0,z_0^{\tau ,h})+\beta \right) \exp (\mu T), \end{aligned}$$

which is the claimed estimate. \(\square \)

B Proof of the discrete energy identity in Lemma 3.8

We follow the lines of [6] and start with the proof of (3.41). From (3.3), (3.4), and the binomial formula, we infer

$$\begin{aligned} {\text {dist}}_{{\mathcal {V}}^*}\{-\varPi _h^*D_z{\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k}^{\tau ,h}\right) , \partial ({\mathcal {R}}_h \circ \varPi _h)(0)\} = \lambda _k^{\tau ,h}\tau . \end{aligned}$$
(B.1)

For arbitrary \(k\in \{1, \ldots , N-1\}\), we thus deduce from (3.3) and (3.37) that

$$\begin{aligned} 0&= \lambda _k^{\tau ,h}\left( ||z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h}||_{\mathbb {V}}-\tau \right) \\&= \lambda _k^{\tau ,h}\tau \left( 1 - ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathbb {V}}\right) \\&= \hat{t}_{\tau ,h}^\prime (s) {\text {dist}}_{{\mathcal {V}}^*}\left\{ -\varPi _h^*D_z{\mathcal {I}}\left( \underline{t}_{\tau ,h}(s),\overline{z}_{\tau ,h}(s)\right) ,\partial ({\mathcal {R}}_h\circ \varPi _h)(0)\right\} , \quad \forall \, s\in \left[ s_{k-1}^{\tau ,h}, s_k^{\tau ,h}\right) , \end{aligned}$$

where we employed the definition of the constant interpolants in (3.35). This gives (3.41) for almost all \(s\in (0,s^{\tau ,h}_{N-1})\). As seen at the end of the proof of Lemma 3.7, it holds \(\lambda ^{\tau ,h}_N = 0\) so that (B.1) implies the assertion for \(s\in (s^{\tau ,h}_{N-1}, S_{\tau ,h})\).

Next we turn to the discrete energy-identity. Since the affine interpolants in (3.34) are by construction elements of \(W^{1,\infty }((0,S_{\tau ,h}))\) and \(W^{1,\infty }((0,S_{\tau ,h});{\mathcal {Z}})\), respectively, and due to \({\mathcal {I}}\in C^1([0,T] \times {\mathcal {Z}})\) by assumption, the chain rule is applicable and gives for \(s \in [s_{k-1}^{\tau ,h},s_k^{\tau ,h})\) that

$$\begin{aligned}&\frac{d }{d s} {\mathcal {I}}(\hat{t}_{\tau ,h}(s),\hat{z}_{\tau ,h}(s)) \\&\quad =\partial _t {\mathcal {I}}(\hat{t}_{\tau ,h}(s),\hat{z}_{\tau ,h}(s)) \hat{t}^\prime _{\tau ,h}(s) + \left\langle D_z{\mathcal {I}}(\hat{t}_{\tau ,h}(s),\hat{z}_{\tau ,h}(s)) , \hat{z}_{\tau ,h}^\prime (s) \right\rangle _{{\mathcal {Z}}^*,{\mathcal {Z}}} \\&\quad =\partial _t {\mathcal {I}}(\hat{t}_{\tau ,h}(s),\hat{z}_{\tau ,h}(s)) \hat{t}^\prime _{\tau ,h}(s) + \frac{1}{s_{k}^{\tau ,h}- s_{k-1}^{\tau ,h}}\left\langle D_z{\mathcal {I}}(\underline{t}_{\tau ,h}(s),\overline{z}_{\tau ,h}(s)) , z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h} \right\rangle _{{\mathcal {Z}}^*,{\mathcal {Z}}} \\&\qquad + \left\langle D_z{\mathcal {I}}(\hat{t}_{\tau ,h}(s),\hat{z}_{\tau ,h}(s)) - D_z{\mathcal {I}}(\underline{t}_{\tau ,h}(s),\overline{z}_{\tau ,h}(s)) , \hat{z}_{\tau ,h}^\prime (s) \right\rangle _{{\mathcal {Z}}^*,{\mathcal {Z}}} \, . \end{aligned}$$

From (3.5), we have in combination with the 1-homogeneity of \({\mathcal {R}}_h\) that

$$\begin{aligned}&- \frac{1}{s_{k}^{\tau ,h}- s_{k-1}^{\tau ,h}} \left\langle D_z{\mathcal {I}}(\underline{t}_{\tau ,h}(s),\overline{z}_{\tau ,h}(s)) , z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h} \right\rangle _{{\mathcal {Z}}^*,{\mathcal {Z}}} \\&\quad = \frac{1}{s_{k}^{\tau ,h}- s_{k-1}^{\tau ,h}} \left( {\mathcal {R}}\left( z_{k}^{\tau ,h}-z_{k-1}^{\tau ,h}\right) + \tau {\text {dist}}_{{\mathcal {V}}^*}\left\{ -\varPi _h^*D_z{\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k}^{\tau ,h}\right) ,\partial ({\mathcal {R}}_h\circ \varPi _h)(0)\right\} \right) \\&\quad = {\mathcal {R}}_h(\hat{z}^\prime _{\tau ,h}) + {\text {dist}}_{{\mathcal {V}}^*}\left\{ -\varPi _h^*D_z{\mathcal {I}}\left( t_{k-1}^{\tau ,h},z_{k}^{\tau ,h}\right) ,\partial ({\mathcal {R}}_h\circ \varPi _h)(0)\right\} ). \end{aligned}$$

Note that, in case of \(k<N\), the last equation results from \(s_{k}^{\tau ,h}- s_{k-1}^{\tau ,h}= \tau \), while, for the case \(k=N\), it follows from \(\lambda _N^{\tau ,h}= 0\) and (B.1), similarly to above. By taking into account the definition of \(r_{\tau ,h}\) in (3.40), integration over \((\sigma _1,\sigma _2)\) then yields (3.39).

It remains to estimate \(r_{\tau ,h}\). To this end, first observe that the definition of the affine and constant interpolants in (3.34) and (3.35) implies for every \(k\in \{1, \ldots , N\}\) and every \(s \in [s_{k-1}^{\tau ,h},s_k^{\tau ,h})\) that

$$\begin{aligned} \hat{z}_{\tau ,h}(s) - \overline{z}_{\tau ,h}(s) = \left( s -s_{k}^{\tau ,h}\right) \hat{z}_{\tau ,h}^\prime (s) \, \text { and } \, \hat{t}_{\tau ,h}(s) - \underline{t}_{\tau ,h}(s) = \left( s -s_{k-1}^{\tau ,h}\right) \hat{t}_{\tau ,h}^\prime (s) , \end{aligned}$$

which is frequently used in the following estimates. Now, let \(k \in \{1, \ldots , N\}\) and \(s\in [s_{k-1}^{\tau ,h},s_k^{\tau ,h})\) be arbitrary. Then, by inserting the concrete form of \({\mathcal {I}}\) into the definition of \(r_{{\tau ,h}}\) in (3.40) and employing the coercivity of A together with \((s-s_k^{\tau ,h})<0\), we arrive at

$$\begin{aligned} \begin{aligned} r_{\tau ,h}(s)&= \left( s-s_k^{\tau ,h}\right) \left\langle A(\hat{z}_{\tau ,h}^\prime (s)) , \hat{z}_{\tau ,h}^\prime (s) \right\rangle _{{\mathcal {Z}}^*,{\mathcal {Z}}} \\&\qquad + \left\langle D_z{\mathcal {F}}(\hat{z}_{\tau ,h}(s)) - D_z{\mathcal {F}}(\overline{z}_{\tau ,h}(s)) , \frac{\hat{z}_{\tau ,h}(s) - \overline{z}_{\tau ,h}(s)}{(s-s_k^{\tau ,h})} \right\rangle _{{\mathcal {V}}^*,{\mathcal {V}}} \\&\qquad - \left\langle \ell \left( \hat{t}_{\tau ,h}(s)\right) - \ell (\underline{t}_{\tau ,h}(s)) , \hat{z}_{\tau ,h}^\prime (s) \right\rangle _{{\mathcal {V}}^*,{\mathcal {V}}} \\&\qquad \le \alpha \left( s-s_k^{\tau ,h}\right) ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathcal {Z}}^2 \\&\qquad + \frac{1}{\left|s-s_k^{\tau ,h}\right|} \, \left|\left\langle D_z{\mathcal {F}}(\overline{z}_{\tau ,h}(s)) - D_z{\mathcal {F}}(\hat{z}_{\tau ,h}(s)) , \overline{z}_{\tau ,h}(s)- \hat{z}_{\tau ,h}(s) \right\rangle _{{\mathcal {V}}^*,{\mathcal {V}}}\right| \\&\qquad + \left|\hat{t}_{\tau ,h}(s) - \underline{t}_{\tau ,h}(s)\right| \, ||\ell ||_{C^1([0,T],{\mathcal {V}}^*)} ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathcal {V}}. \end{aligned} \end{aligned}$$
(B.2)

We apply Lemma 3.5 with \(\varepsilon = \alpha /2\) to the second term on the right hand side to obtain

$$\begin{aligned} \begin{aligned}&\frac{1}{\left|s-s_k^{\tau ,h}\right|} \, \left|\left\langle D_z{\mathcal {F}}(\overline{z}_{\tau ,h}(s)) - D_z{\mathcal {F}}(\hat{z}_{\tau ,h}(s)) , \overline{z}_{\tau ,h}(s)- \hat{z}_{\tau ,h}(s) \right\rangle _{{\mathcal {V}}^*,{\mathcal {V}}}\right| \\&\quad \le \frac{\alpha }{2}\, \left|s-s_k^{\tau ,h}\right|\, ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathcal {Z}}^2 + C_\alpha \, \left|s-s_k^{\tau ,h}\right|\, {\mathcal {R}}_h(\hat{z}_{\tau ,h}^\prime (s))\, ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathbb {V}}\end{aligned} \end{aligned}$$

where we also used the positive homogeneity of \({\mathcal {R}}_h\). By inserting this in (B.2) and using again that \((s-s_k^{\tau ,h})<0\), one deduces

$$\begin{aligned} r_{\tau ,h}(s) \le C \big ( {\mathcal {R}}_h(\hat{z}_{\tau ,h}^\prime (s)) + \hat{t}_{\tau ,h}^\prime (s) \, ||\ell ||_{C^1([0,T],{\mathcal {V}}^*} \big ) (s-s_{k-1}^{\tau ,h}) \, ||\hat{z}_{\tau ,h}^\prime (s)||_{\mathbb {V}}\, . \end{aligned}$$

Integrating and exploiting the definition of \(\hat{z}_{\tau ,h}\) and \(\hat{t}_{\tau ,h}\), respectively, then yields

$$\begin{aligned}&\int _{\sigma _1}^{\sigma _2} r_{\tau ,h}(s) \mathrm {d}s \\&\quad \le \sum _{i=1}^{N} \int _{s_{i-1}^{\tau ,h}}^{s_i^{\tau ,h}} C \Big ( {\mathcal {R}}_h(z_{i}^{\tau ,h}-z_{i-1}^{\tau ,h}) {+} (t_{i}^{\tau ,h} {-} t_{i-1}^{\tau ,h}) \, ||\ell ||_{C^1([0,T],{\mathcal {V}}^*)} \Big ) \frac{s_i^{\tau ,h}-s}{(s_i^{\tau ,h}- s_{i-1}^{\tau ,h})^2} \, ||z_{i}^{\tau ,h}-z_{i-1}^{\tau ,h}||_{\mathbb {V}}\, \mathrm {d}s\\&\quad = \sum _{i=1}^{N} \frac{1}{2}\, C \Big ({\mathcal {R}}_h(z_{i}^{\tau ,h}-z_{i-1}^{\tau ,h}) + (t_{i}^{\tau ,h} - t_{i-1}^{\tau ,h}) \, ||\ell ||_{C^1([0,T],{\mathcal {V}}^*)} \Big ) ||z_{i}^{\tau ,h}-z_{i-1}^{\tau ,h}||_{\mathbb {V}}\\&\quad \le C\, \tau \Big ( T + \sum _{i=1}^{N} {\mathcal {R}}_h(z_{i}^{\tau ,h}-z_{i-1}^{\tau ,h}) \Big ). \end{aligned}$$

Thanks to Lemma 3.2, the bracket on the right hand side is bounded independent of \(\tau \) and h so that (3.42) is proven, too. \(\square \)

C Auxiliary results from convex analysis

In this section, we collect some useful properties of \({\mathcal {R}}\) and \({\mathcal {R}}_h\), respectively. We start with the following lemma, whose proof is straight forward and therefore omitted:

Lemma C.1

Let \({\mathcal {W}}\) be a normed vector space and \({\mathcal {J}}: {\mathcal {W}}\rightarrow {\mathbb {R}}\) a convex and positive 1-homogeneous functional. Then it holds

$$\begin{aligned}&\partial {\mathcal {J}}(v) \subset \partial {\mathcal {J}}(0) \quad \forall v \in {\mathcal {W}} \end{aligned}$$
(C.1)
$$\begin{aligned}&\xi \in \partial {\mathcal {J}}(0) \; \Longleftrightarrow \; {\mathcal {J}}(w) \ge \left\langle \xi , w \right\rangle \quad \forall w \in {\mathcal {W}} \end{aligned}$$
(C.2)
$$\begin{aligned}&\partial {\mathcal {J}}(v) = \{ \xi \in \partial {\mathcal {J}}(0) \, : \, {\mathcal {J}}(v) = \left\langle \xi , v \right\rangle \} \end{aligned}$$
(C.3)
$$\begin{aligned}&{\mathcal {J}}^*(\xi ) = I_{\partial {\mathcal {J}}(0)}(\xi ) \quad \forall \xi \in {\mathcal {W}}^* \end{aligned}$$
(C.4)

where \(I_{\partial {\mathcal {J}}(0)}\) denotes the indicator functional of \(\partial {\mathcal {J}}(0)\).

Remark 4

Since only convexity and positive homogeneity is required for Lemma C.1 to hold, we may apply the above results to \({\mathcal {R}}\), its approximation \({\mathcal {R}}_h\), and \({\mathcal {R}}_h \circ \varPi _h\), considered as operators on \({\mathcal {V}}\) as well as \({\mathcal {Z}}\).

As in the proof of Lemma 3.1, we abbreviate \({\mathcal {R}}_{\tau ,h} = {\mathcal {R}}_h \circ \varPi _h + I_\tau \), where \(I_\tau \) is as defined in (3.8). Analogously, we set \({\mathcal {R}}^h_\tau := {\mathcal {R}}_h + I_\tau (v)\).

Lemma C.2

For every \(\eta \in {\mathcal {V}}^*\), there holds

$$\begin{aligned} ({\mathcal {R}}_{\tau ,h})^*(\eta ) = \tau {\text {dist}}_{{\mathcal {V}}^*}\left\{ \eta ,\varPi _h^* \partial {\mathcal {R}}_h(0)\right\} , \end{aligned}$$
(C.5)

where \({\text {dist}}_{{\mathcal {V}}^*}\{\eta ,\varPi _h^* \partial {\mathcal {R}}_h(0)\} = \inf \{||\eta -\varPi _h^* w||_{{\mathbb {V}}^{-1}} \, : \, w \in \partial {\mathcal {R}}_h(0)\}\) and \( ||\eta ||_{{\mathbb {V}}^{-1}}^2 = \left\langle \eta , {\mathbb {V}}^{-1} \eta \right\rangle \).

Proof

We use the inf-convolution formula (see [1, Prop. 3.4]), which is applicable, since \({\mathcal {R}}_h \circ \varPi _h\) is continuous. This gives

$$\begin{aligned} \left( {\mathcal {R}}_h \circ \varPi _h+I_\tau \right) ^*(\eta ) = \inf _{w\in {\mathcal {V}}^*}\left( ({\mathcal {R}}_h\circ \varPi _h)^*(\eta )+ I_\tau ^*(w-\eta )\right) . \end{aligned}$$
(C.6)

For \(I_\tau ^*\), direct calculation leads to

$$\begin{aligned} I_\tau ^{*}(\eta ) = \tau ||\eta ||_{{\mathbb {V}}^{-1}}. \end{aligned}$$
(C.7)

To calculate the conjugate functional of \(({\mathcal {R}}_h\circ \varPi _h)^*\), note that by the linearity of \(\varPi _h\) the composition \({\mathcal {R}}_h \circ \varPi _h\) is again convex and 1-homogeneous. Therefore, Lemma C.1 gives \(({\mathcal {R}}_h \circ \varPi _h)^*(\eta ) = I_{\partial ({\mathcal {R}}_h\circ \varPi _h)(0)}(\eta )\). The chain-rule for subdifferentials yields \(\partial ({\mathcal {R}}_h \circ \varPi _h)(0) = \varPi _h^* \partial {\mathcal {R}}_h(0)\) so that we obtain

$$\begin{aligned} ({\mathcal {R}}_h \circ \varPi _h)^{*}(\eta ) = I_{\partial ({\mathcal {R}}_h\circ \varPi _h)(0)}(\eta ) = I_{\varPi _h^* \partial {\mathcal {R}}_h(0)}(\eta ). \end{aligned}$$

Inserting this together with (C.7) in (C.6) finally yields

$$\begin{aligned} ({\mathcal {R}}_h\circ \varPi _h + I_\tau )^*(\eta ) = \inf _{w \in \varPi _h^* \partial {\mathcal {R}}_h(0)} \{\tau ||\eta -w||_{{\mathbb {V}}^{-1}} \} = \tau {\text {dist}}_{{\mathcal {V}}^*}\left( \eta , \varPi _h^* \partial {\mathcal {R}}_h(0)\right) , \end{aligned}$$

which is (C.5). \(\square \)

Lemma C.3

Let \(v \in {\mathcal {V}}\) be arbitrary. Then, \(\xi \in {\mathcal {V}}^*\) is an element of \(\partial I_\tau (v)\), iff there exists a multiplier \(\lambda \in {\mathbb {R}}\) such that \( \xi = \lambda {\mathbb {V}}v \) and

$$\begin{aligned} ||v||_{\mathbb {V}}\le \tau , \quad \lambda (||v||_{\mathbb {V}}- \tau ) = 0, \quad \lambda \ge 0. \end{aligned}$$

Proof

According to a classical result of convex analysis in combination with (C.7), it holds

$$\begin{aligned} \xi \in \partial I_\tau (v) \quad \Longleftrightarrow \quad I_\tau (v)+I_\tau ^*(\xi ) = \left\langle \xi , v \right\rangle \quad \Longleftrightarrow \quad \left\{ \;\begin{aligned}&||v||_{\mathbb {V}}\le \tau \\&\tau ||\xi ||_{{\mathbb {V}}^{-1}} = \left\langle \xi , v \right\rangle \end{aligned}\right. \end{aligned}$$
(C.8)

Now, the Cauchy–Schwarz-Inequality implies \(\left\langle \xi , v \right\rangle = \left\langle {\mathbb {V}}({\mathbb {V}}^{-1}\xi ) , v \right\rangle \le ||\xi ||_{{\mathbb {V}}^{-1}} ||v||_{\mathbb {V}} \le \tau ||\xi ||_{{\mathbb {V}}^{-1}}\) so that the equivalence in (C.8) can only hold if \({\mathbb {V}}^{-1}\xi = \lambda v\) for some \(\lambda \in {\mathbb {R}}\). Inserting this into (C.8), we conclude that \(\lambda \ge 0\). Moreover, if \(||v||_{\mathbb {V}}< \tau \), then \(\xi = 0\) so that \(\lambda \) fulfills also \(\lambda (||v||_{\mathbb {V}}- \tau ) = 0\) as claimed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, C., Sievers, M. Finite element discretization of local minimization schemes for rate-independent evolutions. Calcolo 56, 6 (2019). https://doi.org/10.1007/s10092-018-0301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-018-0301-4

Keywords

Mathematics Subject Classification

Navigation