Skip to main content
Log in

A stability analysis of landslides based on random fields, part II: base circle slope

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

In this paper, the stability of base circle slopes is analyzed based on the theory of random fields. The closed-form solution of the safety factor and the failure probability of base circle slopes are obtained using the integration method. The effects of the spatial variation of the mechanical parameters of soils on the stability of base circle slopes are investigated. The mean values of the safety factor and the failure probability of base circle slopes are determined. The effects of spatial correlation length on the failure probability of base circle slopes are studied. The results show that for homogeneous slopes, the accuracy of the vertical integration model is greater than that of the horizontal integration model. For layered slopes, the effectiveness of the horizontal integration method is validated by a Monte Carlo simulation. Therefore, the horizontal integration model is more suitable for the layered slopes than the vertical integration model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen C, Yang Y, Gong X (2003) Horizontal slice method of slope stability analysis under seismic load based on genetic algorithm. Chin J Rock Mech Eng 22(11):1919–1923 (in Chinese)

    Google Scholar 

  • Duncan JM, Buchignani AL (1973) Failure of underwater slope in San Francisco Bay. J Soil Mech Found Div 99(9):687–703

    Google Scholar 

  • Fan MQ (2000) Probabilistic property of shear strength parameters φ, c of refilled clay. J Nanjing Hydraul Res Inst 19(4):100–104 (in Chinese)

    Google Scholar 

  • Fenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, Hoboken

    Book  Google Scholar 

  • Gravanis E, Pantelidis L, Griffiths DV (2014) An analytical solution in probabilistic rock slope stability assessment based on random fields. Int J Rock Mech Min Sci 71:19–24

    Article  Google Scholar 

  • Green DKE, Douglas K, Mostyn G (2015) The simulation and discretization of random fields for probabilistic finite element analysis of soils using meshes of arbitrary triangular elements. Comput Geotech 68:91–108

    Article  Google Scholar 

  • Griffiths DV, Fenton GA (2004) Probabilistic slope stability analysis by finite elements. J Geotech Geoenviron 130(5):507–518

    Article  Google Scholar 

  • Griffiths DV, Fenton GA (2007) Probabilistic methods in geotechnical engineering. Springer, New York

    Book  Google Scholar 

  • Goh ATC (2017) Deterministic and reliability assessment of basal heave stability for braced excavations with jet grout base slab. Eng Geol 218:63–69

    Article  Google Scholar 

  • Huang XC, Zhou XP, Ma W, Niu YW, Wang YT (2016) Two-dimensional stability assessment of rock slopes based on random field. Int J Geomech. doi:10.1061/(ASCE)GM.1943-5622.0000858

    Google Scholar 

  • Ji J, Liao HJ, Low BK (2012) Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations. Comput Geotech 40(3):135–146

    Article  Google Scholar 

  • Jiang SH, Li DQ, Zhang LM, Zhou CB (2013) Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method. Eng Geol 168(1):120–128

    Google Scholar 

  • Liu C, Bai SW, Zhao HB (2003) Statistical regularity research of physical and mechanical indexes of clay. Rock Soil Mech 24(S10):43–48 (in Chinese)

    Google Scholar 

  • Phoon KK, Quek ST, Chow YK, Lee SL (1990) Reliability analysis of pile settlement. J Geotech Eng 116(11):l717–1734

    Article  Google Scholar 

  • Westen CJV, Asch TWJV, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65(2):167–184

    Article  Google Scholar 

  • Wong FS (1985) Slope reliability and response surface method. J Geotech Eng 111(1):32–53

    Article  Google Scholar 

  • Yang GY, Zhao SF (1995) Analytical solution of the slice method for soil slope stability. Mech Eng 2:59–61

    Google Scholar 

  • Ye WT, Pedroso DM, Scheuermann A, Williams DJ (2016) Probabilistic reliability analysis of multiple slopes with genetic algorithms. Comput Geotech 77:68–76

    Article  Google Scholar 

  • Zhang J, Huang HW, Juang CH, Su WW (2014a) Geotechnical reliability analysis with limited data: consideration of model selection uncertainty. Eng Geol 181:27–37

    Article  Google Scholar 

  • Zhang X, Zhang Z, Zhang Y, Zhao Z (2014b) Integration form and the general mathematical model of Sweden circle method. Chin J Appl Mech 31(1):162–168 (in Chinese)

    Article  Google Scholar 

  • Zhang XD, Zhang Y, Zhang B, Zhao PT (2013) Optimization and improvement of Sweden slice method considering the pore water pressure. Chin Q Mech 34(4):643–649 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Nos. 51325903, 51679017) and the Natural Science Foundation Project of CQ CSTC (No. CSTC, cstc2013kjrcljrccj0001, cstc2013jcyjys0005, cstc2015jcyjys0002, cstc2015jcyjys0009, and cstc2016jcyjys0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. P. Zhou.

Appendices

Appendix 1

Here, to consider the possible correlation between cohesion and the friction coefficient, a random field correlation function is written as

$$ E\left[ \tan \varphi (x) \tan \varphi \left({x}^{\hbox{'}}\right)\right]={\mu}_{\tan \varphi}^2+{C}_{\tan \varphi}\left( x-{x}^{\hbox{'}}\right) $$
(34)
$$ E\left[ c(x) c\left({x}^{\hbox{'}}\right)\right]={\mu}_c^2+{C}_c\left( x-{x}^{\hbox{'}}\right) $$
(35)
$$ E\left[ \tan \varphi (x) c\left({x}^{\hbox{'}}\right)\right]={\mu}_{\tan \varphi}{\mu}_c+{C}_{\mathrm{c}- \tan \varphi}\left( x-{x}^{\hbox{'}}\right) $$
(36)

The autocorrelation of the respective random fields can be expressed by Eq. (34) and (35). The cross-correlation between the two random fields can be expressed by Eq. (36). It is assumed that the corresponding covariance function is a general Markov form (Fenton and Griffiths 2008; Huang et al. 2016; Gravanis et al. 2014).

$$ {C}_{\tan \varphi}(x)={\sigma}_{\tan \varphi}^2 \exp \left[-\frac{2\left| x\right|}{\theta_{\tan \varphi}}\right] $$
(37)
$$ {C}_c(x)={\sigma}_c^2 \exp \left[-\frac{2\left| x\right|}{\theta_c}\right] $$
(38)
$$ {C}_{\mathrm{c}- \tan \varphi}(x)={\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{\tan \varphi} \exp \left[-\frac{2\left| x\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right] $$
(39)

where σtanφ and σc are respectively the point variances of the friction coefficient and cohesion, and θtanφ and θc are the respective correlation lengths. The parameter ρc − tan φ is the correlation coefficient, and θc − tan φ is the cross-correlation length. Then, the variance of the safety factor F of the base circle slope based on the horizontal integration model can be explicitly expressed as

$$ \begin{array}{l} E\left[{F}^2\right]=\frac{4{r}^2}{{Q_1}^2}\left\{{U}_1^2{\mu}_{1, \tan \varphi}^2+{U}_2^2{\mu}_{2, \tan \varphi}^2+{U}_3^2{\mu}_{3, \tan \varphi}^2+2{\mathrm{U}}_1{U}_2{\mu}_{1, \tan \varphi}{\mu}_{2, \tan \varphi}+2{\mathrm{U}}_1{U}_3{\mu}_{1, \tan \varphi}{\mu}_{3, \tan \varphi}\right.\hfill \\ {}\kern3em +2{\mathrm{U}}_2{U}_3{\mu}_{2, \tan \varphi}{\mu}_{3, \tan \varphi}+{\sigma}_{1, \tan \varphi}^2{\int}_{\theta_E}^0 d\theta {\int}_{\theta_E}^0{d\theta}^{\hbox{'}}{t}_1\left(\theta \right){t}_1\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]\hfill \\ {}\kern3em +{\sigma}_{2, \tan \varphi}^2{\int}_0^{\theta_D} d\theta {\int}_0^{\theta_D}{d\theta}^{\hbox{'}}{t}_2\left(\theta \right){t}_2\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]\hfill \\ {}\kern3em +\left.{\sigma}_{3, \tan \varphi}^2{\int}_{\theta_D}^{\theta_B} d\theta {\int}_{\theta_D}^{\theta_B}{d\theta}^{\hbox{'}}{t}_3\left(\theta \right){t}_3\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]\right\}\hfill \\ {}\kern3em +\frac{4{r}^2}{\gamma^2{Q_1}^2}\left\{{\mu}_c^2{\left({\theta}_B-{\theta}_E\right)}^2+{\sigma}_c^2{\int}_{\theta_E}^{\theta_B} d\theta {\int}_{\theta_E}^{\theta_B}{d\theta}^{\hbox{'}} \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_c}\right]\right\}\hfill \\ {}\kern3em +\frac{8{r}^2}{\gamma {Q_1}^2}\left\{{\mu}_c\left({\mathrm{U}}_1{\mu}_{1, \tan \varphi}+{\mathrm{U}}_2{\mu}_{2, \tan \varphi}+{U}_3{\mu}_{3, \tan \varphi}\right)\left({\theta}_B-{\theta}_E\right)\right.\hfill \\ {}\kern3em +{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{1, \tan \varphi}{\int}_{\theta_E}^0 d\theta {\int}_{\theta_E}^0{d\theta}^{\hbox{'}}{t}_1\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]\hfill \\ {}\kern3.25em +{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{2, \tan \varphi}{\int}_0^{\theta_D} d\theta {\int}_0^{\theta_D}{d\theta}^{\hbox{'}}{t}_2\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]\hfill \\ {}\kern3em + \left.{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{3, \tan \varphi}{\int}_{\theta_D}^{\theta_B} d\theta {\int}_{\theta_D}^{\theta_B}{d\theta}^{\hbox{'}}{t}_3\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]\right\}\hfill \end{array} $$
(40)

The variance of the safety factor F of the base circle slope based on the horizontal integration model can be obtained by the following expression:

$$ {s}_F^2\equiv Var\left[ F\right]=\frac{4{r}^2}{{Q_1}^2}{s}_{\tan \varphi}^2+\frac{4{r}^2}{\gamma^2{Q_1}^2}{s}_c^2+\frac{8{r}^2}{\gamma {Q_1}^2}{s}_{c- \tan \varphi}^2 $$
(41)

where

$$ \begin{array}{l}{s}_{\tan \varphi}^2={\sigma}_{1, \tan \varphi}^2\left[{T}_1\left({\theta}_E\right){T}_2\left({\theta}_E\right)+\frac{4 kr}{\left({k}^2+1\right)\left({k}^2+9\right)}{T}_1\left({\theta}_E\right){e}^{k{\theta}_E}-\frac{4{k}^2{r}^2}{{\left({k}^2+1\right)}^2{\left({k}^2+9\right)}^2}+{R}_1{I}_1+{R}_2{I}_2\right]\hfill \\ {}\kern2em +{\sigma}_{2, \tan \varphi}^2\left[{T}_1\left({\theta}_D\right){T}_2\left({\theta}_D\right)-\frac{4 kr}{\left({k}^2+1\right)\left({k}^2+9\right)}{T}_2\left({\theta}_D\right){e}^{- k{\theta}_D}-\frac{4{k}^2{r}^2}{{\left({k}^2+1\right)}^2{\left({k}^2+9\right)}^2}+{R}_3{I}_3+{R}_4{I}_4\right]\hfill \\ {}\kern2.5em +{\sigma}_{3, \tan \varphi}^2\left[{T}_3\left({\theta}_D\right){T}_4\left({\theta}_D\right)+{T}_3\left({\theta}_B\right){T}_4\left({\theta}_B\right)-2{T}_3\left({\theta}_D\right){T}_4\left({\theta}_B\right){e}^{k\left({\theta}_D-{\theta}_B\right)}\right.\hfill \\ {}\left.\kern2.5em +{R}_5{I}_5+{R}_6{I}_6+{R}_7{I}_7+{R}_8{I}_8+{R}_9{I}_9+{R}_{10}{I}_{10}+{R}_{11}{I}_{11}+{R}_{12}{I}_{12}\right]\hfill \end{array} $$
(42)
$$ {s}_c^2={\sigma}_c^2\frac{2}{k_1^2}\left[{e}^{k_1\left({\theta}_E-{\theta}_B\right)}+{k}_1\left({\theta}_B-{\theta}_E\right)-1\right] $$
(43)
$$ \begin{array}{l}{s}_{c- \tan \varphi}^2={\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{1, \tan \varphi}\frac{1}{k_2}\left[2{U}_1+{T}_6\left({\theta}_E\right)+\frac{2{k}_2 r}{\left({k}_2^2+1\right)\left({k}_2^2+9\right)}\left({e}^{k_2{\theta}_E}-1\right)+{T}_5\left({\theta}_E\right){e}^{k_2{\theta}_E}\right]\hfill \\ {}\kern2em +{\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{2, \tan \varphi}\frac{1}{k_2}\left[2{U}_2-{T}_5\left({\theta}_D\right)+\frac{2{k}_2 r}{\left({k}_2^2+1\right)\left({k}_2^2+9\right)}\left({e}^{-{k}_2{\theta}_D}-1\right)-{T}_6\left({\theta}_D\right){e}^{-{k}_2{\theta}_D}\right]\hfill \\ {}\kern2.5em +{\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{3, \tan \varphi}\frac{1}{k_2}\left[2{U}_3+{T}_8\left({\theta}_D\right)-{T}_7\left({\theta}_B\right)+\left({T}_7\left({\theta}_D\right)-{T}_8\left({\theta}_B\right)\right){e}^{k_2\left({\theta}_D-{\theta}_B\right)}\right]\hfill \end{array} $$
(44)
$$ {T}_1\left(\theta \right)=\frac{r}{k^2+9}\times \left[ k{ \sin}^2\theta \cos \theta -3 \sin \theta { \cos}^2\theta +\frac{\left({k}^2+3\right) \sin \theta +2 k \cos \theta}{k^2+1}\right] $$
(45)
$$ {T}_2\left(\theta \right)=\frac{r}{k^2+9}\times \left[- k{ \sin}^2\theta \cos \theta -3 \sin \theta { \cos}^2\theta +\frac{\left({k}^2+3\right) \sin \theta -2 k \cos \theta}{k^2+1}\right] $$
(46)
$$ \begin{array}{l}{T}_3\left(\theta \right)=\frac{a- b \cot \beta}{k^2+4}\left( k \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)\hfill \\ {}\kern2em +\frac{r}{k^2+9}\times \left[\left( k \cot \beta -3\right) \sin \theta { \cos}^2\theta \left.+\left( k+3 \cot \beta \right){ \sin}^2\theta \cos \theta \right]\right.\hfill \\ {}\kern2em +\frac{r\left({k}^2+2\mathrm{k} \cot \beta +3\right) \sin \theta - r\left({k}^2 \cot \beta -2\mathrm{k}+3 \cot \beta \right) \cos \theta}{\left({k}^2+1\right)\left({k}^2+9\right)}\hfill \end{array} $$
(47)
$$ \begin{array}{l}{T}_4\left(\theta \right)=\frac{b \cot \beta - a}{k^2+4}\left( k \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)\hfill \\ {}\kern2em +\frac{r}{k^2+9}\times \left[-\left( k \cot \beta +3\right) \sin \theta { \cos}^2\theta \left.-\left( k-3 \cot \beta \right){ \sin}^2\theta \cos \theta \right]\right.\hfill \\ {}\kern2em +\frac{r\left({k}^2-2\mathrm{k} \cot \beta +3\right) \sin \theta - r\left({k}^2 \cot \beta +2\mathrm{k}+3 \cot \beta \right) \cos \theta}{\left({k}^2+1\right)\left({k}^2+9\right)}\hfill \end{array} $$
(48)
$$ {T}_5\left(\theta \right)=\frac{r}{{k_2}^2+9}\left[{k}_2{ \sin}^2\theta \cos \theta -3 \sin \theta { \cos}^2\theta \left.+\frac{\left({k_2}^2+3\right) \sin \theta +2{\mathrm{k}}_2 \cos \theta}{{k_2}^2+1}\right]\right. $$
(49)
$$ {T}_6\left(\theta \right)=\frac{r}{{k_2}^2+9}\left[-{k}_2{ \sin}^2\theta \cos \theta -3 \sin \theta { \cos}^2\theta \left.+\frac{\left({k_2}^2+3\right) \sin \theta -2{\mathrm{k}}_2 \cos \theta}{{k_2}^2+1}\right]\right. $$
(50)
$$ \begin{array}{l}{T}_7\left(\theta \right)=\frac{a- b \cot \beta}{{k_2}^2+4}\left({k}_2 \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)\hfill \\ {}\kern2em +\frac{r}{{k_2}^2+9}\left[\left({k}_2 \cot \beta -3\right) \sin \theta { \cos}^2\theta \left.+\left({k}_2+3 \cot \beta \right){ \sin}^2\theta \cos \theta \right]\right.\hfill \\ {}\kern2em +\frac{r\left({k_2}^2+2{\mathrm{k}}_2 \cot \beta +3\right) \sin \theta - r\left({k_2}^2 \cot \beta -2{\mathrm{k}}_2+3 \cot \beta \right) \cos \theta}{\left({k_2}^2+1\right)\left({k_2}^2+9\right)}\hfill \end{array} $$
(51)
$$ \begin{array}{l}{T}_8\left(\theta \right)=\frac{b \cot \beta - a}{{k_2}^2+4}\left({k}_2 \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)\hfill \\ {}\kern2em +\frac{r}{{k_2}^2+9}\left[-\left({k}_2 \cot \beta +3\right) \sin \theta { \cos}^2\theta \left.-\left({k}_2-3 \cot \beta \right){ \sin}^2\theta \cos \theta \right]\right.\hfill \\ {}\kern2em +\frac{r\left({k_2}^2-2{\mathrm{k}}_2 \cot \beta +3\right) \sin \theta - r\left({k_2}^2 \cot \beta +2{\mathrm{k}}_2+3 \cot \beta \right) \cos \theta}{\left({k_2}^2+1\right)\left({k_2}^2+9\right)}\hfill \end{array} $$
(52)
$$ \left\{\begin{array}{l}{R}_1={R}_3=\frac{{ k r}^2}{8\left({k}^2+9\right)}\kern1em \\ {}{R}_2={R}_4=\frac{{ k r}^2}{2\left({k}^2+1\right)\left({k}^2+9\right)}\kern0.75em \end{array}\right. $$
(53)
$$ \left\{\begin{array}{l}\kern0.5em {I}_1=-{\theta}_E+\frac{1}{4} \sin 2{\theta}_E+\frac{1}{4} \sin 4{\theta}_E-\frac{1}{12} \sin 6{\theta}_E\\ {}{I}_2=-{\theta}_E+\frac{1}{4} \sin 4{\theta}_E\kern0.75em \end{array}\right. $$
(54)
$$ \left\{\begin{array}{l}\kern0.5em {I}_3={\theta}_D-\frac{1}{4} \sin 2{\theta}_D-\frac{1}{4} \sin 4{\theta}_D+\frac{1}{12} \sin 6{\theta}_D\\ {}{I}_4={\theta}_D-\frac{1}{4} \sin 4{\theta}_D\kern0.75em \end{array}\right. $$
(55)
$$ \left\{\begin{array}{l}{R}_5=-\frac{4 kr\left( a- b \cot \beta \right)}{3\left({k}^2+1\right)\left({k}^2+9\right)},\kern0.5em {R}_6=\frac{4 kr \cot \beta \left( a- b \cot \beta \right)}{3\left({k}^2+1\right)\left({k}^2+9\right)}\ \\ {}{R}_7=\frac{{k r}^2 \cot \beta}{\left({k}^2+1\right)\left({k}^2+9\right)}\kern0.75em \\ {}{R}_8=\frac{k{\left( a- b \cot \beta \right)}^2}{4\left({k}^2+4\right)}+\frac{{k r}^2\left({k}^2+5\right)\left(1+{ \cot}^2\beta \right)}{8\left({k}^2+1\right)\left({k}^2+9\right)}\kern0.5em \\ {}{R}_9=2 kr \cot \beta \left( a- b \cot \beta \right)\left(\frac{1}{k^2+4}+\frac{1}{k^2+9}\right)\\ {}{R}_{10}=2 kr\left( a- b \cot \beta \right)\left(\frac{1}{k^2+4}+\frac{1}{k^2+9}\right)\kern0.5em \\ {}{R}_{11}=\frac{{k r}^2 \cot \beta}{k^2+9},{R}_{12}=\frac{{k r}^2\left({ \cot}^2\beta -1\right)}{32\left({k}^2+9\right)}\end{array}\right. $$
(56)
$$ \left\{\begin{array}{l}{I}_5=\left({ \cos}^3{\theta}_B-{ \cos}^3{\theta}_D\right),\kern0.5em {I}_6=\left({ \sin}^3{\theta}_B-{ \sin}^3{\theta}_D\right)\kern0.75em \\ {}{I}_7=\left({ \sin}^4{\theta}_B-{ \sin}^4{\theta}_D\right)-\left({ \cos}^4{\theta}_B-{ \cos}^4{\theta}_D\right)\kern0.75em \\ {}{I}_8=\left({\theta}_B-{\theta}_D\right)-\frac{1}{4}\left( \sin 4{\theta}_B- \sin 4{\theta}_D\right)\kern0.75em \\ {}{I}_9=\frac{1}{3}\left({ \sin}^3{\theta}_B-{ \sin}^3{\theta}_D\right)-\frac{1}{5}\left({ \sin}^5{\theta}_B-{ \sin}^5{\theta}_D\right)\\ {}{I}_{10}=\frac{1}{5}\left({ \cos}^5{\theta}_B-{ \cos}^5{\theta}_D\right)-\frac{1}{3}\left({ \cos}^3{\theta}_B-{ \cos}^3{\theta}_D\right)\kern0.5em \\ {}{I}_{11}=\left({ \sin}^4{\theta}_B-{ \sin}^4{\theta}_D\right)-\frac{2}{3}\left({ \sin}^6{\theta}_B-{ \sin}^6{\theta}_D\right)\\ {}{I}_{12}=\left( \sin 2{\theta}_B- \sin 2{\theta}_D\right)-\frac{1}{3}\left( \sin 6{\theta}_B- \sin 6{\theta}_D\right)\end{array}\right. $$
(57)
$$ k=\frac{2 r}{\theta_{\tan \varphi}} $$
(58)
$$ {k}_1=\frac{2 r}{\theta_c} $$
(59)
$$ {k}_2=\frac{2 r}{\theta_{c- \tan \varphi}} $$
(60)

Appendix 2

The variance of the safety factor F of the base circle slope based on the vertical integration model can be explicitly expressed.

$$ \begin{array}{l} E\left[{F}^2\right]=\frac{1}{{Q_2}^2}\left\{{\mathrm{U}}_4^2{\mu}_{4, \tan \varphi}^2+{\mathrm{U}}_5^2{\mu}_{5, \tan \varphi}^2+{\mathrm{U}}_6^2{\mu}_{6, \tan \varphi}^2+2{U}_4{U}_5{\mu}_{4, \tan \varphi}{\mu}_{5, \tan \varphi}+2{U}_4{U}_6{\mu}_{4, \tan \varphi}{\mu}_{6, \tan \varphi}+2{U}_5{U}_6\right.\\ {}\kern2.75em \times {\mu}_{5, \tan \varphi}{\mu}_{6, \tan \varphi}+{\sigma}_{4, \tan \varphi}^2{\int}_{\theta_E}^{\theta_I} d\theta {\int}_{\theta_E}^{\theta_I}{d\theta}^{\hbox{'}}\ {\mathrm{t}}_4\left(\theta \right){\mathrm{t}}_4\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]+{\sigma}_{5, \tan \varphi}^2{\int}_{\theta_I}^{\theta_H} d\theta {\int}_{\theta_I}^{\theta_H}{d\theta}^{\hbox{'}}\ \\ {}\kern3em \left.{\mathrm{t}}_5\left(\theta \right){\mathrm{t}}_5\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]+{\sigma}_{6, \tan \varphi}^2{\int}_{\theta_H}^{\theta_B} d\theta {\int}_{\theta_H}^{\theta_B}{d\theta}^{\hbox{'}}\ {\mathrm{t}}_6\left(\theta \right){\mathrm{t}}_6\left({\theta}^{\hbox{'}}\right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\tan \varphi}}\right]\right\}\\ {}\kern3em +\frac{1}{\gamma^2{Q_2}^2}\left\{{\mu}_c^2{\left({\theta}_B-{\theta}_E\right)}^2+{\sigma}_c^2{\int}_{\theta_E}^{\theta_B} d\theta {\int}_{\theta_E}^{\theta_B}{d\theta}^{\hbox{'}}\ \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_c}\right]\right\}\\ {}\kern2.75em +\frac{2}{\gamma {Q_2}^2}\left\{{\mu}_c\left({U}_4{\mu}_{4, \tan \varphi}+{U}_5{\mu}_{5, \tan \varphi}+{U}_6{\mu}_{6, \tan \varphi}\right)\left({\theta}_B-{\theta}_E\right)+{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{4, \tan \varphi}\right.\\ {}\kern2.75em {\int}_{\theta_E}^{\theta_I} d\theta {\int}_{\theta_E}^{\theta_I}{d\theta}^{\hbox{'}}\ {\mathrm{t}}_4\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]+{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{5, \tan \varphi}{\int}_{\theta_I}^{\theta_H} d\theta {\int}_{\theta_I}^{\theta_H}{d\theta}^{\hbox{'}}\ {\mathrm{t}}_5\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]\\ {}\kern2.5em +{\rho}_{c- \tan \varphi}{\sigma}_c{\sigma}_{6, \tan \varphi}{\int}_{\theta_H}^{\theta_B} d\theta {\int}_{\theta_H}^{\theta_B}{d\theta}^{\hbox{'}}\ {\mathrm{t}}_6\left(\theta \right) \exp \left[-\frac{2 r\left|\theta -{\theta}^{\hbox{'}}\right|}{\theta_{\mathrm{c}- \tan \varphi}}\right]\\ {}\kern2.75em \end{array} $$
(61)

The variance of the safety factor F of the base circle slope based on the vertical integration model can be written in the following form

$$ {S}_F^2\equiv Var\left[ F\right]=\frac{1}{{Q_2}^2}{S}_{\tan \varphi}^2+\frac{1}{\gamma^2{Q_2}^2}{S}_c^2+\frac{2}{\gamma {Q_2}^2}{S}_{\mathrm{c}- \tan \varphi}^2 $$
(62)

where

$$ \begin{array}{l}{S}_{\tan \varphi}^2={\sigma}_{4, \tan \varphi}^2\left[{T}_9\left({\theta}_E\right)\ {T}_{10}\left({\theta}_E\right)+{T}_9\left({\theta}_I\right)\ {T}_{10}\left({\theta}_I\right)-2{T}_9\left({\theta}_E\right)\ {T}_{10}\left({\theta}_I\right){e}^{k\left({\theta}_E-{\theta}_I\right)}\right.\hfill \\ {}\left.\kern2em +{R}_{13}{I}_{13}+{R}_{14}{I}_{14}+{R}_{15}{I}_{15}+{R}_{16}{I}_{16}+{R}_{17}{I}_{17}+{R}_{18}{I}_{18}+{R}_{19}{I}_{19}\right]\hfill \\ {}\kern2em +{\sigma}_{5, \tan \varphi}^2\left[{T}_{11}\left({\theta}_I\right)\ {T}_{12}\left({\theta}_I\right)+{T}_{11}\left({\theta}_H\right)\ {T}_{12}\left({\theta}_H\right)-2{T}_{11}\left({\theta}_I\right)\ {T}_{12}\left({\theta}_H\right){e}^{k\left({\theta}_I-{\theta}_H\right)}+{R}_{20}{I}_{20}+{R}_{21}{I}_{21}+{R}_{22}{I}_{22}\right.\hfill \\ {}\left.\kern2.5em +{R}_{23}{I}_{23}+{R}_{24}{I}_{24}+{R}_{25}{I}_{25}+{R}_{26}{I}_{26}+{R}_{27}{I}_{27}+{R}_{28}{I}_{28}+{R}_{29}{I}_{29}+{R}_{30}{I}_{30}+{R}_{31}{I}_{31}+{R}_{32}{I}_{32}\right]\hfill \\ {}\kern2em +{\sigma}_{6, \tan \varphi}^2\left[{T}_{13}\left({\theta}_H\right)\ {T}_{14}\left({\theta}_H\right)+{T}_{13}\left({\theta}_B\right)\ {T}_{14}\left({\theta}_B\right)-2{T}_{13}\left({\theta}_H\right)\ {T}_{14}\left({\theta}_B\right){e}^{k\left({\theta}_H-{\theta}_B\right)}\right.\hfill \\ {}\left.\kern2em +{R}_{33}{I}_{33}+{R}_{34}{I}_{34}+{R}_{35}{I}_{35}+{R}_{36}{I}_{36}+{R}_{37}{I}_{37}+{R}_{38}{I}_{38}+{R}_{39}{I}_{39}\right]\hfill \end{array} $$
(63)
$$ {S}_c^2={\sigma}_c^2\frac{2}{k_1^2}\left[{e}^{k_1\left({\theta}_E-{\theta}_B\right)}+{k}_1\left({\theta}_B-{\theta}_E\right)-1\right] $$
(64)
$$ \begin{array}{l}{S}_{c- \tan \varphi}^2={\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{4, \tan \varphi}\frac{1}{k_2}\left[2{U}_4-{T}_{15}\left({\theta}_I\right)+{T}_{16}\left({\theta}_E\right)+\left({T}_{15}\left({\theta}_E\right)-{T}_{16}\left({\theta}_I\right)\right){e}^{k_2\left({\theta}_E-{\theta}_I\right)}\right]\hfill \\ {}\kern2.5em +{\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{5, \tan \varphi}\frac{1}{k_2}\left[2{U}_5-{T}_{17}\left({\theta}_H\right)+{T}_{18}\left({\theta}_I\right)+\left({T}_{17}\left({\theta}_I\right)-{T}_{18}\left({\theta}_H\right)\right){e}^{k_2\left({\theta}_I-{\theta}_H\right)}\right]\hfill \\ {}\kern2.5em +{\rho}_{\mathrm{c}- \tan \varphi}{\sigma}_c{\sigma}_{6, \tan \varphi}\frac{1}{k_2}\left[2{U}_6-{T}_{19}\left({\theta}_B\right)+{T}_{20}\left({\theta}_H\right)+\left({T}_{19}\left({\theta}_H\right)-{T}_{20}\left({\theta}_B\right)\right){e}^{k_2\left({\theta}_H-{\theta}_B\right)}\right]\hfill \end{array} $$
(65)
$$ \begin{array}{l}{T}_9\left(\theta \right)=\frac{- b}{k}\left[{ \cos}^2\theta +\frac{2\left( k \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{k^2+4}\right]+\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern2.5em +\frac{3 r}{k\left({k}^2+9\right)}\left[ k \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta -\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(66)
$$ \begin{array}{l}{T}_{10}\left(\theta \right)=\frac{b}{k}\left[{ \cos}^2\theta -\frac{2\left( k \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{k^2+4}\right]-\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k\left({k}^2+9\right)}\left[ k \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta +\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(67)
$$ \begin{array}{l}{T}_{11}\left(\theta \right)=\frac{a \tan \beta - b}{k}\left[{ \cos}^2\theta +\frac{2\left( k \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{k^2+4}\right]+\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{r}{k^2+9}\left(\frac{3}{k}+ \tan \beta \right)\left[ k \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta -\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(68)
$$ \begin{array}{l}{T}_{12}\left(\theta \right)=\frac{b- a \tan \beta}{k}\left[{ \cos}^2\theta -\frac{2\left( k \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{k^2+4}\right]-\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{r}{k^2+9}\left(\frac{3}{k}- \tan \beta \right)\left[ k \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta +\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(69)
$$ \begin{array}{l}{T}_{13}\left(\theta \right)=\frac{h- b}{k}\left[{ \cos}^2\theta +\frac{2\left( k \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{k^2+4}\right]+\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern2em +\frac{3 r}{k\left({k}^2+9\right)}\left[ k \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta -\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(70)
$$ \begin{array}{l}{T}_{14}\left(\theta \right)=\frac{b- h}{k}\left[{ \cos}^2\theta -\frac{2\left( k \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{k^2+4}\right]-\frac{r}{k}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k\left({k}^2+9\right)}\left[ k \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2 k \sin \theta +\left({k}^2+3\right) \cos \theta}{k^2+1}\right]\hfill \end{array} $$
(71)
$$ \begin{array}{l}{T}_{15}\left(\theta \right)=\frac{- b}{k_2}\left[{ \cos}^2\theta +\frac{2\left({k}_2 \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{{k_2}^2+4}\right]+\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k_2\left({k_2}^2+9\right)}\left[{k}_2 \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta -\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(72)
$$ \begin{array}{l}{T}_{16}\left(\theta \right)=\frac{b}{k_2}\left[{ \cos}^2\theta -\frac{2\left({k}_2 \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{{k_2}^2+4}\right]-\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k_2\left({k_2}^2+9\right)}\left[{k}_2 \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta +\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(73)
$$ \begin{array}{l}{T}_{17}\left(\theta \right)=\frac{a \tan \beta - b}{k_2}\left[{ \cos}^2\theta +\frac{2\left({k}_2 \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{{k_2}^2+4}\right]+\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{r}{{k_2}^2+9}\left(\frac{3}{k_2}+ \tan \beta \right)\left[{k}_2 \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta -\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(74)
$$ \begin{array}{l}{T}_{18}\left(\theta \right)=\frac{b- a \tan \beta}{k_2}\left[{ \cos}^2\theta -\frac{2\left({k}_2 \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{{k_2}^2+4}\right]-\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{r}{{k_2}^2+9}\left(\frac{3}{k_2}- \tan \beta \right)\left[{k}_2 \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta +\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(75)
$$ \begin{array}{l}{T}_{19}\left(\theta \right)=\frac{h- b}{k_2}\left[{ \cos}^2\theta +\frac{2\left({k}_2 \sin \theta \cos \theta -{ \cos}^2\theta +{ \sin}^2\theta \right)}{{k_2}^2+4}\right]+\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k_2\left({k_2}^2+9\right)}\left[{k}_2 \sin \theta { \cos}^2\theta +3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta -\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(76)
$$ \begin{array}{l}{T}_{20}\left(\theta \right)=\frac{b- h}{k_2}\left[{ \cos}^2\theta -\frac{2\left({k}_2 \sin \theta \cos \theta +{ \cos}^2\theta -{ \sin}^2\theta \right)}{{k_2}^2+4}\right]-\frac{r}{k_2}{ \cos}^3\theta \hfill \\ {}\kern3em +\frac{3 r}{k_2\left({k_2}^2+9\right)}\left[{k}_2 \sin \theta { \cos}^2\theta -3{ \sin}^2\theta \cos \theta +\frac{2{k}_2 \sin \theta +\left({k_2}^2+3\right) \cos \theta}{{k_2}^2+1}\right]\hfill \end{array} $$
(77)
$$ \left\{\begin{array}{l}{R}_{13}=\frac{6 rb\left({k}^2+3\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)},{R}_{14}=\frac{b^2}{2 k\left({k}^2+4\right)}\\ {}{R}_{15}=\frac{b^2\left({k}^2+2\right)}{k\left({k}^2+4\right)}-\frac{3{r}^2\left({k}^2+3\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)}\\ {}{R}_{16}=\frac{-2 rb}{k}\left(\frac{2}{k^2+4}+\frac{9}{k^2+9}\right),{R}_{17}=\frac{-4 rb\left({k}^2+3\right)}{k\left({k}^2+4\right)}\\ {}{R}_{18}=\frac{9{r}^2}{8 k\left({k}^2+9\right)},{R}_{19}=\frac{r^2}{8 k}\end{array}\right. $$
(78)
$$ \left\{\begin{array}{l}{I}_{13}=\left( \sin {\theta}_I- \sin {\theta}_E\right)-\frac{1}{3}\left({ \sin}^3{\theta}_I-{ \sin}^3{\theta}_E\right)\\ {}{I}_{14}=\left({\theta}_I-{\theta}_E\right)-\frac{1}{4}\left( \sin 4{\theta}_I- \sin 4{\theta}_E\right)\\ {}{I}_{15}=\frac{3}{4}\left({\theta}_I-{\theta}_E\right)+\frac{1}{2}\left( \sin 2{\theta}_I- \sin 2{\theta}_E\right)+\frac{1}{16}\left( \sin 4{\theta}_I- \sin 4{\theta}_E\right)\\ {}{I}_{16}=\frac{1}{3}\left({ \sin}^3{\theta}_I-{ \sin}^3{\theta}_E\right)-\frac{1}{5}\left({ \sin}^5{\theta}_I-{ \sin}^5{\theta}_E\right)\\ {}{I}_{17}=\frac{1}{5}\left({ \sin}^5{\theta}_I-{ \sin}^5{\theta}_E\right)-\frac{2}{3}\left({ \sin}^3{\theta}_I-{ \sin}^3{\theta}_E\right)+\left( \sin {\theta}_I- \sin {\theta}_E\right)\\ {}{I}_{18}=\left({\theta}_I-{\theta}_E\right)+\frac{1}{4}\left( \sin 2{\theta}_I- \sin 2{\theta}_E\right)-\frac{1}{4}\left( \sin 4{\theta}_I- \sin 4{\theta}_E\right)-\frac{1}{12}\left( \sin 6{\theta}_I- \sin 6{\theta}_E\right)\\ {}{I}_{19}=5\left({\theta}_I-{\theta}_E\right)+\frac{15}{4}\left( \sin 2{\theta}_I- \sin 2{\theta}_E\right)+\frac{3}{4}\left( \sin 4{\theta}_I- \sin 4{\theta}_E\right)+\frac{1}{12}\left( \sin 6{\theta}_I- \sin 6{\theta}_E\right)\end{array}\right. $$
(79)
$$ \left\{\begin{array}{l}{R}_{20}=-\frac{4 kr \tan \beta \left( a \tan \beta - b\right)}{3\left({k}^2+1\right)\left({k}^2+9\right)},{R}_{21}=\frac{6 r\left({k}^2+3\right)\left( a \tan \beta - b\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)}\\ {}{R}_{22}=\frac{{\left( a \tan \beta - b\right)}^2}{k\left({k}^2+4\right)}+\frac{{k r}^2{ \tan}^2\beta}{\left({k}^2+1\right)\left({k}^2+9\right)},{R}_{23}=\frac{r^2 \tan \beta}{2 k\left({k}^2+1\right)}\\ {}{R}_{24}=\frac{\left({k}^2+2\right){\left( a \tan \beta - b\right)}^2}{k\left({k}^2+4\right)}-\frac{3{r}^2\left({k}^2+3\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)}\\ {}{R}_{25}=\frac{4 r \tan \beta \left( a \tan \beta - b\right)}{k\left({k}^2+4\right)},{R}_{26}=\frac{2 r\left( a \tan \beta - b\right)}{k}\left(\frac{2}{k^2+4}+\frac{9}{k^2+9}\right)\\ {}{R}_{27}=-\frac{2 r\left(2{k}^2+3\right)\left({k}^2+6\right) \tan \beta \left( a \tan \beta - b\right)}{5 k\left({k}^2+4\right)\left({k}^2+9\right)}\\ {}{R}_{28}=\frac{4 r\left({k}^2+3\right)\left( a \tan \beta - b\right)}{k\left({k}^2+4\right)},{R}_{29}=\frac{3{r}^2 \tan \beta}{k\left({k}^2+9\right)}\\ {}{R}_{30}=\frac{9{r}^2}{8 k\left({k}^2+9\right)}+\frac{{k r}^2{ \tan}^2\beta}{8\left({k}^2+9\right)},{R}_{31}=-\frac{r^2\left(2{k}^2+9\right) \tan \beta}{3 k\left({k}^2+9\right)},{R}_{32}=\frac{r^2}{8 k}\end{array}\right. $$
(80)
$$ \left\{\begin{array}{l}{I}_{20}={ \cos}^3{\theta}_H-{ \cos}^3{\theta}_I,{I}_{21}=\frac{1}{3}\left({ \sin}^3{\theta}_H-{ \sin}^3{\theta}_I\right)-\left( \sin {\theta}_H- \sin {\theta}_I\right)\\ {}{I}_{22}=\frac{1}{2}\left({\theta}_H-{\theta}_I\right)-\frac{1}{8}\left( \sin 4{\theta}_H- \sin 4{\theta}_I\right),{I}_{23}={ \cos}^4{\theta}_H-{ \cos}^4{\theta}_I\\ {}{I}_{24}=\frac{3}{4}\left({\theta}_H-{\theta}_I\right)+\frac{1}{2}\left( \sin 2{\theta}_H- \sin 2{\theta}_I\right)+\frac{1}{16}\left( \sin 4{\theta}_H- \sin 4{\theta}_I\right)\\ {}{I}_{25}=\frac{1}{5}\left({ \cos}^5{\theta}_H-{ \cos}^5{\theta}_I\right)-\frac{1}{3}\left({ \cos}^3{\theta}_H-{ \cos}^3{\theta}_I\right)\\ {}{I}_{26}=\frac{1}{3}\left({ \sin}^3{\theta}_H-{ \sin}^3{\theta}_I\right)-\frac{1}{5}\left({ \sin}^5{\theta}_H-{ \sin}^5{\theta}_I\right),{I}_{27}={ \cos}^5{\theta}_H-{ \cos}^5{\theta}_I\\ {}{I}_{28}=\frac{1}{5}\left({ \sin}^5{\theta}_H-{ \sin}^5{\theta}_I\right)-\frac{2}{3}\left({ \sin}^3{\theta}_H-{ \sin}^3{\theta}_I\right)+\left( \sin {\theta}_H- \sin {\theta}_I\right)\\ {}{I}_{29}=\frac{3}{2}\left({ \sin}^4{\theta}_H-{ \sin}^4{\theta}_I\right)-\left({ \sin}^6{\theta}_H-{ \sin}^6{\theta}_I\right)\\ {}{I}_{30}=\left({\theta}_H-{\theta}_I\right)+\frac{1}{4}\left( \sin 2{\theta}_H- \sin 2{\theta}_I\right)-\frac{1}{4}\left( \sin 4{\theta}_H- \sin 4{\theta}_I\right)-\frac{1}{12}\left( \sin 6{\theta}_H- \sin 6{\theta}_I\right)\\ {}{I}_{31}={ \cos}^6{\theta}_H-{ \cos}^6{\theta}_I\\ {}{I}_{32}=5\left({\theta}_H-{\theta}_I\right)+\frac{15}{4}\left( \sin 2{\theta}_H- \sin 2{\theta}_I\right)+\frac{3}{4}\left( \sin 4{\theta}_H- \sin 4{\theta}_I\right)+\frac{1}{12}\left( \sin 6{\theta}_H- \sin 6{\theta}_I\right)\end{array}\right. $$
(81)
$$ \left\{\begin{array}{l}{R}_{33}=\frac{6 r\left({k}^2+3\right)\left( h- b\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)},{R}_{34}=\frac{{\left( h- b\right)}^2}{2 k\left({k}^2+4\right)}\\ {}{R}_{35}=\frac{\left({k}^2+2\right){\left( h- b\right)}^2}{k\left({k}^2+4\right)}-\frac{3{r}^2\left({k}^2+3\right)}{k\left({k}^2+1\right)\left({k}^2+9\right)}\\ {}{R}_{36}=\frac{2 r\left( h- b\right)}{k}\left(\frac{2}{k^2+4}+\frac{9}{k^2+9}\right),{R}_{37}=\frac{4 r\left({k}^2+3\right)\left( h- b\right)}{k\left({k}^2+4\right)}\\ {}{R}_{38}=\frac{9{r}^2}{8 k\left({k}^2+9\right)},{R}_{39}=\frac{r^2}{8 k}\end{array}\right. $$
(82)
$$ \left\{\begin{array}{l}{I}_{33}=\frac{1}{3}\left({ \sin}^3{\theta}_B-{ \sin}^3{\theta}_H\right)-\left( \sin {\theta}_B- \sin {\theta}_H\right),{I}_{34}=\left({\theta}_B-{\theta}_H\right)-\frac{1}{4}\left( \sin 4{\theta}_B- \sin 4{\theta}_H\right)\\ {}{I}_{35}=\frac{3}{4}\left({\theta}_B-{\theta}_H\right)+\frac{1}{2}\left( \sin 2{\theta}_B- \sin 2{\theta}_H\right)+\frac{1}{16}\left( \sin 4{\theta}_B- \sin 4{\theta}_H\right)\ \\ {}{I}_{36}=\frac{1}{3}\left({ \sin}^3{\theta}_B-{ \sin}^3{\theta}_H\right)-\frac{1}{5}\left({ \sin}^5{\theta}_B-{ \sin}^5{\theta}_H\right)\\ {}{I}_{37}=\frac{1}{5}\left({ \sin}^5{\theta}_B-{ \sin}^5{\theta}_H\right)-\frac{2}{3}\left({ \sin}^3{\theta}_B-{ \sin}^3{\theta}_H\right)+\left( \sin {\theta}_B- \sin {\theta}_H\right)\\ {}{I}_{38}=\left({\theta}_B-{\theta}_H\right)+\frac{1}{4}\left( \sin 2{\theta}_B- \sin 2{\theta}_H\right)-\frac{1}{4}\left( \sin 4{\theta}_B- \sin 4{\theta}_H\right)-\frac{1}{12}\left( \sin 6{\theta}_B- \sin 6{\theta}_H\right)\\ {}{I}_{39}=5\left({\theta}_B-{\theta}_H\right)+\frac{15}{4}\left( \sin 2{\theta}_B- \sin 2{\theta}_H\right)+\frac{3}{4}\left( \sin 4{\theta}_B- \sin 4{\theta}_H\right)+\frac{1}{12}\left( \sin 6{\theta}_B- \sin 6{\theta}_H\right)\end{array}\right. $$
(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X.P., Zhu, B.Z. & Wong, L.N.Y. A stability analysis of landslides based on random fields, part II: base circle slope. Bull Eng Geol Environ 78, 117–130 (2019). https://doi.org/10.1007/s10064-017-1051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1051-2

Keywords

Navigation