Skip to main content
Log in

Landscape evolution and engineering geology: results from IAEG Commission 22

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Commission 22 was set up following the 10th IAEG Congress to provide guidelines for incorporating a geomorphological understanding of landscape evolution into engineering geological practice and this paper presents the findings of the Commission. The concept arose from the recognition that landscapes are not static entities during the design life of an engineering structure and that anticipating the changes that will occur should be regarded as a fundamental component of the ground model developed for a construction project. Whilst not all aspects of long term landscape evolution fit easily with engineering projects that have a 100 years design life, there are shorter term processes that do require careful evaluation and incorporation in a site investigation. Concepts of landform equilibrium, geomorphological process-response systems, geohazards, climate and lithologically controlled landscapes, and complex landform assemblages within a palimpsest context, all provide important input for the creation of a four dimensional ground model as required by good ground engineering practice. These concepts are explored in this paper in relation to themes that have a long history within engineering geology and ground model development: geohazard assessment, reactivation of relict processes, design life, risk registers, reference conditions, effects of climate change, magnitude and frequency of natural processes, and cost benefit analysis. Some thoughts on how landscape evolution might influence construction contracts are also explored and suggestions made on incorporating methods for establishing landscape evolution in site investigations.

Résumé

La Commission 22 de l’AIGI a été constituée à la suite du 10ème Congrès de l ‘AIGI avec l’objectif de fournir des orientations pour la prise en compte des contextes géomorphologiques dans la pratique professionnelle des ingénieurs géologues. Cet article présente les résultats des travaux de la Commission. Le concept est né de la reconnaissance que les paysages ne sont pas des entités statiques durant la vie d’une structure d’ingénierie et que l’anticipation des changements prévisibles doit être considérée comme une composante fondamentale du modèle de sol développé pour un projet de construction. Alors que tous les aspects de l’évolution à long terme d’un paysage ne peuvent être intégrés facilement dans des projets d’ingénierie d’une durée de vie de 100 ans, il y a des processus de plus court terme qui demandent une évaluation soigneuse et leur prise en compte dans les études de terrain. Les concepts d’équilibre du relief, de processus géomorphologiques, de risques géologiques et de paysages géologiques fournissent des éléments essentiels pour la création de modèles de terrain à quatre dimensions nécessaires à une bonne pratique professionnelle de la géologie de l’ingénieur. Ces concepts sont présentés dans cet article en relation avec des thèmes qui ont une longue histoire au sein de la géologie de l’ingénieur et dans le cadre du développement des modèles de terrain: évaluation des risques géologiques, réactivation de processus, durée de vie, registre de risques, conditions de référence, effets du changement climatique, amplitude et fréquence de processus naturels, analyses coûts-bénéfices. Quelques réflexions sur la façon dont l’évolution du paysage pourrait influencer les contrats de construction sont également présentées et des suggestions sont faites sur l’intégration de méthodes pour se prononcer sur des évolutions de paysage dans le cadre des investigations de terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. A geohazard can be defined as a geological state that represents, or has the potential to develop further into, a situation leading to damage or uncontrolled risk (International Centre for Geohazards 2012).

  2. Geomorphology is the study of the forms of the earth’s surface: their origin; the processes involved in their development; the properties of the materials from which they are made; predictions about their future form (Brunsden 2002).

  3. Engineering geomorphology is the application of geomorphology to engineering, including the evaluation of: the near surface ground for design and construction; the risks to civil engineering projects from earth surface processes; the availability of resources for construction; and the effects of civil engineering projects on the environment (Fookes et al. 2007, page 1).

References

  • ABI (Association of British Insurers) (2004) Review of planning policy guidance note 25: development and flood risk. Consultation Response, ABI, London

    Google Scholar 

  • Alexander D (1993) Natural Disasters. UCL Press, London

    Google Scholar 

  • Alexander D (2000) Confronting catastrophe: new perspectives on natural disasters. Terra Publishing, Harpenden

    Google Scholar 

  • Álvarez AJ (2009) Mapa de Caudales Máximos en Espana. http://www.marm.es/es/agua/publicaciones/Mapa_caudales_maximos_Espana_tcm7-28761.pdf. Accessed 7 Aug 2009

  • Anderson JGC, Trigg CF (1976) Case-histories in engineering geology. Elk Science, London, p 204

    Google Scholar 

  • Baynes F (2010) Sources of geotechnical risk. Q J Eng Geol Hydrogeol 43:321–331

    Article  Google Scholar 

  • Baynes F, Fookes PG, Kennedy JF (2005) Total engineering geology approach to applied railways in the Pilbara, Western Australia. Bull Int Assoc Eng Geol Environ 64:67–94

    Article  Google Scholar 

  • Beaumont C, Kooi H, Willett S (2000) Coupled-surface process models with applications to rifted margins and collisional orogens. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, Chichester, pp 255–281

  • Bell FG (2003) Geological hazards: their assessment, avoidance and mitigation. Taylor Francis, London

    Google Scholar 

  • Bennett MR, Doyle P (1997) Environmental geology. Wiley, Chichester

    Google Scholar 

  • Berz G (1990) Natural disasters and insurance/reinsurance. UNDRO News, pp 18–19

  • Beyer PJ (ed) (2005) Dams and geomorphology. Special issue, Geomorphology 71:262

  • Bishop P (2008) Tectonic and related landforms. In: Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) The history of the study of landforms. The Geological Society, London, pp 55–105

  • Blair Jr RW (1986) Karst landforms and lakes. In: Short NM, Blair Jr RW (eds) Geomorphology from space, chap 7. NASA, Huston. http://disc.sci.gsfs.nasa.gov/geomorphology/. Accessed 27 Jul 2011

  • Bloom AL (1986) Coastal landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from space, chapter 6. NASA, Huston. http://disc.sci.gsfs.nasa.gov/geomorphology/. Accessed 27 Jul 2011

  • Bonilla MG (1991) Faulting and seismic activity. In: Kiersch GA (ed) The heritage of engineering geology: the first hundred years, centennial special, vol 3. Geological Society of America, Boulder, pp 251–264

  • Braun J, Van der Beek P (2004) Evolution of passive margin escarpments: what can we learn from low-temperature thermochronology? J Geophys Res 109:F04009

    Article  Google Scholar 

  • Brunsden D (2002) Geomorphological roulette for engineers and planners: some insights into an old game. Q J Eng Geol Hydrogeol 35:101–142

    Article  Google Scholar 

  • Brunsden D, Doornkamp JC, Fookes PG, Jones DKC, Kelly JMH (1975) Large-scale geomorphological mapping in highway engineering design. Q J Eng Geol 8:227–253

    Article  Google Scholar 

  • Bűdel J (1948) Das system der klimatischen geomorphologie. Verhandlungen Deutscher Geographentag 27:65–100

    Google Scholar 

  • Bűdel J (1982) Climatic geomorphology. Princetown University Press, Princetown

    Google Scholar 

  • Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) (2008) The history of the study of landforms. The Geological Society, London

    Google Scholar 

  • Chapman D (1999) Natural hazards. Oxford University Press, Oxford

    Google Scholar 

  • Chorley RJ (1965) A re-evaluation of the geomorphic system of W.M. Davis. In: Chorley RJ, Hagett P (eds) Frontiers in geographical teaching. Methuen, London, pp 21–38

    Google Scholar 

  • Chorley RJ, Kennedy BA (1971) Physical geography: a systems approach. Prentice-Hall, London

    Google Scholar 

  • Chorley RJ, Schumm SA, Sugden DE (1984) Geomorphology. Methuen, London

    Google Scholar 

  • Christian JT (2007) Lessons from Hurricane Katrina. The Bridge 37(1):5–11

    Google Scholar 

  • CIRIA (1978) Tunnelling—improved contract practices. Construction Industry Research and Information Association, Report 79, p 70

  • Clayton CRI (2001) Managing geotechnical risk: improving productivity in UK building and construction. Thomas Telford, London

    Book  Google Scholar 

  • Cluff LS (2007) Effects of the 2004 Sumatra-Andaman earthquake and Indian Ocean tsunami in Aceh Province. The Bridge 37(1):12–16

    Google Scholar 

  • Cockburn HAP, Summerfield MA (2004) Geomorphological applications of cosmogenic isotope analysis. Prog Phys Geogr 28:1–42

    Article  Google Scholar 

  • Cooke RU, Brunsden D, Doornkamp JC, Jones DKC (1982) Urban geomorphology in drylands. Oxford University Press, Oxford

    Google Scholar 

  • Croot D, Griffiths JS (2001) Engineering geological significance of relict periglacial activity in South and East Devon. Q J Eng Geol Hydrogeol 34:269–281

    Article  Google Scholar 

  • Doornkamp JC, Brunsden D, Jones DKC, Cooke RU, Bush PR (1979) Rapid geomorphological assessments for engineering. Q J Eng Geol 12:189–204

    Google Scholar 

  • Edmonds CN (2001) Subsidence hazards in Berkshire in areas underlain by chalk karst. In: Griffiths JS (ed) Land surface evaluation for engineering practice. Geol Soc Eng Geol Special Pub 18:97–106

  • Ehlig PL (1987) The Portuguese bend landslide stabilization project. American Association of Petroleum Geologists Field Guide, California

    Google Scholar 

  • Embleton C, Thornes JB (eds) (1979) Process in geomorphology. Edward Arnold, London

  • Everett JR, Morisawa M, Short NM (1986) Tectonic landforms. In: Short NM, Blair RW Jr (eds) Geomorphology from space, chapter 2. NASA, Huston. http://disc.sci.gsfs.nasa.gov/geomorphology/. Accessed 27 Jul 2011

  • Fagan BM (2001) The Little Ice Age: how climate made history 1033–1850. Basic Books, New York

    Google Scholar 

  • Fookes PG (1997) Geology for engineers: the geological model, prediction and performance. Q J Eng Geol Hydrogeol 38:231–284

    Google Scholar 

  • Fookes PG, Baynes F (2008) Successful use of the total geology approach; using reference conditions for the design and construction of heavy duty railways in the Pilbara, Western Australia. Ground Eng, March, pp 39–45

    Google Scholar 

  • Fookes PG, Dale SG (1992) Comparison of interpretation of a major landslide at an earthfill dam site in Papua New Guinea. Q J Eng Geol 24:313–330

    Article  Google Scholar 

  • Fookes PG, Baynes FJ, Hutchinson JN (2000) Total geological history: a model approach to the anticipation, observation and understanding on site conditions. GeoEng 2000, an international conference on geotechnical & geological engineering, Melbourne 1:370–460

  • Fookes PG, Baynes FJ, Hutchinson JN (2001) Total geological history: a model approach to understanding site ground conditions. Ground Eng 34(3):42–47

    Google Scholar 

  • Fookes PG, Lee EM, Milligan G (eds) (2005) Geomorphology for engineers. Whittles, Caithness

  • Fookes PG, Lee EM, Griffiths JS (2007) Engineering geomorphology: theory and practice. Whittles, Caithness

  • Gerrard J (2008) Geology and Landforms. In: Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) The history of the study of landforms. The Geological Society, London, pp 13–54

  • Gischig VS (2011) Kinematics and failure mechanisms of the Randa rock slope instability (Switzerland). Ph.D. thesis, ETH Zurich

  • Griffiths JS (ed) (2001) Land surface evaluation for engineering practice. Geological Society Engineering Geology Special Publication, vol 18, Geological Society, London

  • Griffiths JS (2010) Investigating the role of landscape evolution in determining ground conditions for engineering: examples from South–West England. Geosci South–West Engl 12(3):177–187

    Google Scholar 

  • Griffiths JS, Culshaw MG (2004) Seeking the research frontiers for UK engineering geology. Q J Eng Geol Hydrogeol 37:317–325

    Article  Google Scholar 

  • Griffiths JS, Marsh A (1986) BS5930: The role of geomorphological and geological techniques in a preliminary site investigation. In: Hawkins AB (ed) Site investigation practice: assessing BS5930, Geological Society Engineering Geology Special Publication, vol 2, pp 261–267

  • Griffiths JS, Stokes M (2008) Engineering geomorphological input to ground models: an approach based on Earth systems. Q J Eng Geol Hydrogeol 41:73–91

    Article  Google Scholar 

  • Griffiths JS, Whitworth M (2012) Engineering geomorphology of landslides. In: Clague JJ, Stead D (eds) Landslides: types, mechanism and modeling. Cambridge University Press, Cambridge, pp 172–186

  • Griffiths JS, Hutchinson JN, Brunsden D, Petley DJ, Fookes PG (2004) The reactivation of a landslide during the construction of the Ok Ma tailings dam, Papua New Guinea. Q J Eng Geol Hydrogeol 37:173–186

    Article  Google Scholar 

  • Gumbel EJ (1967) Extreme value analysis of hydrologic data. Proceedings of hydrology symposium no. 5 on statistical methods in hydrology, 24–25th Feb 1966, McGill University, Department of Energy, Mines and Resources of Canada, Ottawa, pp 147–169

  • Gutiérrez Elorza M (2005) Climatic geomorphology. Developments in earth surface process, vol 8, English Translation, Elsevier, Rotterdam

  • Hall AP, Griffiths JS (1998) A possible failure mechanism for the 1575 a.d. ‘Wonder’ landslide. East Midland Geographer, 21/22. Essays in honour of John Griggs and John Doornkamp, pp 92–105

  • Hall JW, Cruikshank IC, Godfrey PS (2001) Software-supported risk management for the construction industry. Proc Inst Civil Eng: Civil Eng 144:42–48

    Article  Google Scholar 

  • Harvey AM, Miller SY, Wells SG (1995) Quaternary soil and river terrace sequences in the Aguas/Feos river systems: Sorbas basin, southeast Spain. In: Lewin J, MacKlin MG, Woodward JC (eds) Mediterranean Quaternary river environments. Balkema, Rotterdam, pp 263–281

    Google Scholar 

  • Haslett SK (2000) Coastal systems. Routledge, London

    Google Scholar 

  • Health and Safety Executive (2009) ALARP suite of guidance. http://www.hse.gov.uk/risk/theory/alarp.htm. Accessed 27 Jan 2012

  • Hearn GJ (ed) (2011) Slope engineering for mountain roads, vol 24. Geological Society Engineering Geology Special Publication, London

  • Hearn GJ, Hart AB (2011) Geomorphological contributions to landslide risk assessment: theory and practice. In: Smith MJ, Paron P, Griffiths JS (eds) Geomorphological mapping: theory and practice, Elsevier, Amsterdam, pp 107–148

  • Ho HY, King JP, Wallace MI (2006) A basic guide to air photo interpretation in Hong Kong. Applied Geoscience Centre, Hong Kong, p 115

  • Hooke WH (2007) Engineering for the threat of natural disasters. The Bridge 37(1):3–4

    Google Scholar 

  • Hutchinson JN (1991) Theme lecture: periglacial and slope processes. In: Forster A, Culshaw MG, Cripps JC, Little JA, Moon CF (eds) Quaternary engineering geology, Geological Society Engineering Geology Special Publication, vol 7, pp 283–331

  • Hutchinson JN (2001) Reading the ground: morphology and geology in site appraisal. Q J Eng Geol Hydrogeol 34:7–50

    Article  Google Scholar 

  • International Centre for Geohazards (2012) http://www.geohazards.no/. Accessed 25 Jan 2012

  • IPCC (2007a) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2007b) Climate change 2007: Impacts, adaptations and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson LE (2002) Landslides and landscape evolution in the Rocky Mountains and adjacent Foothills area, southwestern Alberta, Canada. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence and mechanisms, vol XV. Geological Society of America Reviews in Engineering Geology, Boulder, Colorado, pp 325–344

  • James LB, Kiersch GA (1991) Failures of engineering works. In: Kiersch GA (ed) The heritage of engineering geology: the first hundred years, chapter 22, Centennial Special vol 3, Geological Society of America, Boulder, pp 479–516

  • Jones DKC, Lee EM (1994) Landsliding in Great Britain. HMSO Publications Centre, London

    Google Scholar 

  • Jongmans D, Biève G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigations of a large landslide in glaciolacustrine clays in the Triéves area (French Alps). Eng Geol 109:45-56

    Google Scholar 

  • Julian M, Anthony E (1996) Aspects of landslide activity in the Mercantour Massif and the French Riviera, S.E France. Geomorphology 15:275–289

    Article  Google Scholar 

  • Keller EA, Blodgett RH (2006) Natural hazards. Pearson Education Ltd, London

    Google Scholar 

  • Kemeny J (2003) The time-dependent reduction of sliding cohesion due to rock bridges along discontinuities: a fracture mechanics approach. Rock Mech Rock Eng 36(1):27–38

    Article  Google Scholar 

  • Kirchner J, Finkel RC, Riebe C, Granger DE, Clayton JL, King JG, Megahan WF (2001) Mountain erosion over 10 yr., 10 k.y., and 10 m.y. timescales. Geology 29:591–594

    Article  Google Scholar 

  • Kong WK (2002) Risk assessment of slopes. Q J Eng Geol Hydrogeol 35:213–222

    Article  Google Scholar 

  • Kőppen W (1936) Das geographisca system de Klimate. In: Kőppen W, Geiger G (eds) Handbuch der Klimatologie, C. Gebr, Borntraeger, pp 1–44

  • Lane RGT (1983) Seismicity and dam design. International Commission on Large Dams, vol 46, Bulletin

  • Lee EM, Charman JH (2005) Soil erosion. In: Fookes PG, Lee EM, Milligan G (eds) Geomorphology for engineers. Whittles, Caithness, pp 287–317

  • Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London

    Google Scholar 

  • Lee EM, Moore R, McInnes RG (1998) Assessment of the probability of landslides reactivation: Isle of Wight Undercliff. In: Moore D, Hungr O (eds) Engineering geology: the view from the Pacific rim, Balkema, Amsterdam, pp 1315–1321

  • Linden KV (1989) The Portuguese Bend landslide. Eng Geol 27:301–373

    Article  Google Scholar 

  • Lucas HC, Robinson VK (1995) Modelling of rising groundwater levels in the Chalk aquifer of the London Basin. Q J Eng Geol 28(Suppl 1):S51–S62

    Article  Google Scholar 

  • Matthews J, Briffa KR (2005) The Little Ice Age: re-evaluation of an evolving concept. Geografiska Annaler 87A:17–36

    Article  Google Scholar 

  • Maund JG, Eddlestone M (eds) (1998) Geohazards in engineering geology, vol 15. Geological Society Engineering Geology Special Publication, London

  • Mayne PW, Christopher BR, Berg RR, DeJong J (2002) Sub-surface investigations—geotechnical site characterization, publication no. FHWA NHI-01-031, National Highway Institute, Federal Highway Administration, Washington DC

  • McCall GJH, Laming JC, Scott SC (eds) (1992) Geohazards. Chapman & Hall, London

  • McColl ST, Davies TRH, McSaveney MJ (2010) Glacier retreat and rock-slope stability: debunking debuttressing. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically active, Press, Leiden, pp 467–474

  • Merriman PA, Browitt CWA (1993) Natural disasters: protecting vulnerable communities. Thomas Telford, London

    Book  Google Scholar 

  • Moore RJ, Clark AR, Lee EM (1998) Coastal cliff behaviour and management: Blackgang, Isle of Wight. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology, vol 15. Geological Society Engineering Geology Special Publication, London, pp 49–60

  • Muir Wood A (2004) Ahead of the face. 5th Harding Memorial Lecture held at the Institution of Civil Engineers, 15 Apr 2004, The British Tunnelling Society, p 20

  • Nathanail J, Banks V (2009) Climate change: implications for engineering geology practice. In: Culshaw MG, Reeves HJ, Jefferson I, Spink TW (eds) Engineering geology for tomorrow’s cities, vol 22. Geological Society Engineering Geology Special Publication, pp 65–82

  • Nicholson D, Tse C-M, Penny C (eds) (1999) The observational method in ground engineering: principles and applications. Thomas Telford, London

  • Orford J (2005) Coastal environments. In: Fookes PG, Lee EM, Milligan G (eds) Geomorphology for engineers, chapter 21. Whittles, Caithness, pp 576–602

  • Pantelides L (2010) An alternative rock mass classification system for rock slopes. Bull Int Assoc Eng Geol Environ 69:29–39

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Kőppen-Geiger climate classification. Hydrol Earth Sys Sci 11:1633–1644

    Article  Google Scholar 

  • Peltier LC (1950) The geographical cycle in periglacial regions as it is related to climatic geomorphology. Ann Assoc Am Geogr 40:214–236

    Google Scholar 

  • Ransome FL (1928) Geology of the St Francis dam site. Econ Geol 23:558–563

    Google Scholar 

  • Rowlands KA, Jones LD, Whitworth M (2003) Landslide scanning: a new look at an old problem. Q J Eng Geol Hydrogeol 36:155–157

    Article  Google Scholar 

  • Royse KR, Rutter HK, Entwisle DC (2009) Property attribution of 3D geological models in the Thames Gateway, London; new ways of visualizing geoscientific information. Bull Int Assoc Eng Geol Environ 68:1–16

    Article  Google Scholar 

  • Scholey GK (2004) Impact of eolian sand hazards on desert pipelines. In: Sweeney M (ed) Terrain and geohazard challenges facing onshore oil and gas pipelines. Thomas Telford, London, pp 498–511

  • Schuster RL, Mullineaux DR (1991) Volcanic activity. In: Kiersch GA (ed) The heritage of engineering geology: the first hundred years, Centennial Special vol 3. Geological Society of America, Boulder, pp 233–250

  • Short NM, Bloom AL (1986) Volcanic landforms. In: Short NM, Blair Jr RW (eds) Geomorphology from space, chap 3. NASA, Huston. http://disc.sci.gsfs.nasa.gov/geomorphology/. Accessed 27 Jul 2011

  • Silvers K, Griffiths JS (2009) Landslides affecting the Vía Interoceánica, East of Quito, Ecuador. In: Culshaw M, Reeves K, Jefferson I, Spink T (eds) Engineering geology for tomorrow’s cities, vol 2. Geological Society Engineering Geology Special Publication, London, CC-ROM paper 234

  • Simons N, Menzies B, Matthews M (2002) A short course in geotechnical site investigation. Thomas Telford, London

    Book  Google Scholar 

  • Sinadinovski C (2006) The event of 26th of December 2004—the biggest earthquake in the world in the last 40 years. Bull Earthq Eng 4(2):131–139

    Article  Google Scholar 

  • Skempton AW, Vaughan PR (1993) The failure of the Carsington dam. Geotechnique 43:151–173

    Article  Google Scholar 

  • Skempton AW, Weeks AG (1976) The Quaternary history of the Lower Greensand escarpment and Weald Clay vale near Sevenoaks, Kent. Philos Trans Royal Soc London 283A:493–526

    Google Scholar 

  • Smith K, Petley DN (2009) Environmental hazards, assessing risk and reducing disaster, 5th edn. Routledge, London

    Google Scholar 

  • Smith M, Paron P, Griffiths JS (eds) (2011) Geomorphological mapping: methods and applications. Developments in Earth Sciences, vol 15. Elsevier, Amsterdam

  • Somerville G (2003) The design life of structures. Blackie, London

    Google Scholar 

  • Stead D, Coggan JS, Eberhardt E (2004) Realistic simulation of rock slope failure mechanisms: the need to incorporate principles of fracture mechanics. SINOROCK 2004. Spec Publ Int J Rock Mech 41:563–568

    Article  Google Scholar 

  • Stoddart DR (1969) Climatic geomorphology: review and reassessment. Geography 1:159–222

    Google Scholar 

  • Stokes MR, Griffiths JS, Mather AE (2012) Palaeoflood hydrology of Quaternary coarse grained river terrace landforms (Río Almanzora, SE Spain). Geomorphology 149–150:11–26

  • Summerfield MA (1994) Global geomorphology. Wiley, Chichester

    Google Scholar 

  • Summerfield MA (ed) (2000) Geomorphology and global tectonics. Wiley, Chichester

    Google Scholar 

  • Summerfield MA (2005a) The changing landscape of geomorphology. Earth Surf Proc Land 30:779–781

    Article  Google Scholar 

  • Summerfield MA (2005b) A tale of two scales, or the two geomorphologies. Trans Inst Br Geogr NS30:402–415

    Google Scholar 

  • Symons IF, Booth AI (1971) Investigation of the stability of earthwork construction on the original line of the Sevenoaks by-pass, Kent. Road Research Laboratory Report, LR 293, Department of Transport, Crowthorne

  • Thornes JB (1974) The rain in Spain. Geogr Mag 46(7):339–343

    Google Scholar 

  • Thornes JB, Brunsden D (1977) Geomorphology and time. Methuen, London

    Google Scholar 

  • Tricart J (1974) Structural geomorphology. Longman, London

    Google Scholar 

  • Tricart J, Cailleux A (1972) Introduction to climatic geomorphology. Longman, London

    Google Scholar 

  • Trudgill ST (1985) Limestone geomorphology. Longman, London

    Google Scholar 

  • Trudgill ST (2008) Limestone landforms 1890–1965. In: Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) The history of the study of landforms. The Geological Society, London, pp 107–125

  • Turner AK (2003) Definition of modelling technologies. In: MS Rosenbaum, AK Turner (eds) New paradigms in subsurface prediction, chapter 3. Springer, Berlin, p 397

  • Twidale CR (1971) Structural landforms. Australian National University Press, Canberra

    Google Scholar 

  • Tyrrell AP, Lake LM, Parsons AW (1983) An investigation of the extra costs arising on highway contracts. Report SR 814. Transport and Road Research Laboratory, Crowthorne, p 20

    Google Scholar 

  • UNEP (2007) The fourth global environment outlook—environment for development (GEO-4). United Nations Environment Programme, Nairobi

    Google Scholar 

  • Walker HJ (2008) Coastal landforms. In: Burt TP, Chorley RJ, Brunsden D, Cox NJ, Goudie AS (eds) The history of the study of landforms. The Geological Society, London, pp 803–862

  • Waltham AC (2005a) Volcanic landforms. In: Fookes PG, Lee EM, Milligan G (eds) Geomorphology for engineers. Whittles, Caithness, pp 633–661

  • Waltham AC (2005b) Karst terrains. In: Fookes PG, Lee EM, Milligan G (eds) Geomorphology for Engineers, chapter 24. Whittles, Caithness, pp 662–687

  • Waltham AC (2005c) Subsidence. In: Fookes PG, Lee EM, Milligan G (eds) Geomorphology for engineers, chapter 12. Whittles, Caithness, pp 318–342

  • Waltham AC, Fookes PG (2003) Engineering classification of karst ground conditions. Q J Eng Geol Hydrogeol 36:101–118

    Article  Google Scholar 

  • Watson A, Moore D, Stewart T (2004) Temperature influence on rock slope movements at Checkerboard Creek. Proceedings of the ninth international symposium on landslides, Rio de Janeiro, Brazil 2:1293–1298

    Google Scholar 

  • Whipple KX (2001) Fluvial landscape response time: how plausible is steady-state denudation? Am J Sci 301:313–325

    Article  Google Scholar 

  • Whitworth MCZ, Giles DP, Murphy W (2005) Airborne remote sensing for landslide hazard assessment: a case study on the Jurassic escarpment slopes of Worcestershire, UK. Q J Eng Geol Hydrogeol 38:285–300

    Article  Google Scholar 

  • Whitworth MRZ, Griffiths JS, Lee EM (2009) Evaluating risk in a rural environment: a case study; Sorbas SE Spain. In: Culshaw MG, Jefferson I, Reeves H, Spink T (eds) ‘Engineering geology of tomorrow’s cities’, vol 22. Geological Society Engineering Geology Special Publication, London, CD-ROM insert paper 535

  • Wiley AJ (1928) Causes leading to the failure of the St Francis dam. State Printing Office, Sacramento

  • Wilkinson B (1985) Rising groundwater levels in London and possible effects on engineering structures. Hydrogeology in the service of man, memoires of the international association of hydrogeology, Cambridge, pp 145–157

  • Wolman MG, Gerson R (1978) Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surf Processes 3:189–208

    Article  Google Scholar 

  • Wolman MG, Miller JP (1960) Magnitude and frequency of forces in geomorphic processes. J Geol 68:54–74

    Article  Google Scholar 

Download references

Acknowledgments

Commission 22 was instigated by the former IAEG President Dr Fred Baynes (2006–2010). The work on the commission has been carried out by the four authors but they are grateful for conversations and suggestions made by colleagues over many years on building the ground model for engineering geology and incorporating long term landscape development into the understanding of ground conditions for engineering practice. Particular thanks are given to: Professor Peter Fookes; Professor Denys Brunsden; Professor David Jones; Dr. John Doornkamp; Dr. Gareth Hearn; Dr. Anne Mather; Chris Martin; Professor Roger Moore; Professor Mark Lee; David Norbury; Dr Andrew Hart; Dr. Malcolm Whitworth; Mike Whitworth; and the late Professor John Hutchinson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Griffiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, J.S., Stokes, M., Stead, D. et al. Landscape evolution and engineering geology: results from IAEG Commission 22. Bull Eng Geol Environ 71, 605–636 (2012). https://doi.org/10.1007/s10064-012-0434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0434-7

Keywords

Mots clés

Navigation