Skip to main content
Log in

A critical review of highway slope instability risk assessment systems

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

This paper reviews existing highway slope instability risk assessment systems. It demonstrates that both quantitative and qualitative systems have some major disadvantages with a common characteristic being the lack of emphasis on the geology and geomorphology of slopes. Furthermore, the role of climatic conditions (the most common landslide triggering factor) is diminished or even ignored. It is noted that the existing risk assessment systems focus either on only one category of consequences (e.g. travellers’ safety) or simply sum the scores of more than one category, which may lead to an under-estimation of the significance of a consequence category. Finally, the suitability and reliability of the most commonly used consequences factors are discussed.

Résumé

Cet article considère différents systèmes d’évaluation des risques d’instabilité de talus d’autoroute. Il démontre que les systèmes quantitatifs, de même que les systèmes qualitatifs, présentent des inconvénients majeurs avec la caractéristique commune d’une prise en compte insuffisante de la géologie et de la géomorphologie. De plus, le rôle des conditions climatiques (le facteur de déclenchement de glissements le plus commun) est sous-estimé ou même ignoré. Il est noté que les différents systèmes d’évaluation des risques soit se focalisent sur une seule catégorie de conséquences (e.g. la sécurité des voyageurs) ou simplement additionnent les scores de plus d’une catégorie, ce qui peut conduire à une sous-estimation du risque pour une catégorie particulière. Finalement, l’intérêt et la fiabilité de la plupart des facteurs les plus communément utilisés portant à conséquence sont discutés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HRHRS:

Highway Rockfall Hazard Rating System (Wyllie 1987)

SSRS:

Slope Stability Rating System (FHWA 1989)

RHRS:

Rockfall Hazard Rating System (Pierson and Van Vickle 1993)

RHRON:

Ontario Rockfall Hazard Rating System (Franklin and Senior 1997)

NPCSs:

New Priority Classification Systems (Wong 1998)

USMS:

Unstable Slope Management System (Lowell and Morin 2000)

USRS:

Unstable Slopes Rating System (ODOT 2001)

HiSIMS:

Highway Slope Instability Management System (Miller 2003)

MORFH-RS:

Missouri Rock Fall Hazard Rating System (Maerz and Youssef 2004)

mRHRS:

Modified Rockfall Hazard Rating System (Budetta 2004)

RHCMS:

Rockfall Hazard Classification and Mitigation System (Pierson et al. 2005)

RCSA:

Rock cut stability assessment (Uribe-Etxebarria et al. 2005)

RHRM:

Rockfall Hazard Rating Matrix for Ohio (Woodard and Shakoor 2005)

LHRS:

Landslide Hazard Rating System (Liang et al. 2006)

UDOT-RHRS:

UDOT Rockfall Hazard Rating System (Pack et al. 2006)

TRHRS:

Tennessee Rockfall Hazard Rating System (Mauldon et al. 2007)

RSRP:

Rock Slope Rating Procedure (NYDOT 2007)

CRHRS:

Colorado Rockfall Hazard Rating System (Russell et al. 2008)

References

  • AASHTO (2004) A policy on geometric design of highways and streets (The Green Book), AASHTO, Washington

  • AGS (2007) Practice note guidelines for landslide risk management. Aust Geomechan 42(1):64–113

    Google Scholar 

  • Bateman V (2003) The development of a database to manage rockfall hazard: the Tennessee rockfall hazard database. In: Proceedings of 82nd annual meeting of Transportation Research Board, Washington, DC

  • Budetta P (2002) Risk assessment from debris flows in pyroclastic deposits along a motorway, Italy. Bull Eng Geol Environ 61(4):293–301. doi:10.1007/s10064-002-0161-6

    Article  Google Scholar 

  • Budetta P (2004) Assessment of rockfall risk along roads. Nat Haz Earth Syst Sci 4:71–81

    Article  Google Scholar 

  • Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from rock fall on a highway. Can Geotech J 34(3):344–356. doi:10.1139/cgj-34-3-344

    Google Scholar 

  • Fell R, Ho KKS, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis, London, pp 3–25

    Google Scholar 

  • FHWA (1989) Rock slopes: design, excavation, stabilization, Publication No FHWA-TS-89–045. FHWA. USDOT, McLean

    Google Scholar 

  • Franklin JA, Senior SA (1997) The Ontario rockfall hazard rating system. In: Proceedings of international conference on engineering geology and the environment, vol 1, pp 647–656

  • IUGS Working Group on Landslides, Committee on Risk Assessment (1997) Quantitative risk assessment for slopes and landslides—the state of the art. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterbam, pp 3–12

  • Lee EM, Jones KC (2004) Landslide risk assessment. Thomas Telford, London

    Google Scholar 

  • Liang R, Geiger G, Beach K, Pensomboon G (2006) Landslide hazard rating system in Ohio DOT. In: Proceedings of ASCE GeoCongress 2006 on geotechnical engineering in the information technology age (CD-ROM)

  • Lowell S, Morin P (2000) Unstable slope management: Washington State. Transp Res News 207:11–15

    Google Scholar 

  • Maerz NH, Youssef A (2004) Development of a highway rock cut rating system for Missouri highways. Development and technology. Missouri Department of Transportation, Jefferson

    Google Scholar 

  • Mauldon M, Drumm EC, Dunne WM, Bateman V, Rose B, Kim M (2007) Rockfall management system for Tennessee. Division of Materials and Tests, Tennessee Department of Transportation, Nashville

    Google Scholar 

  • Miller SM (2003) Development and implementation of the Idaho highway slope instability and management system (HiSIMS). National Institute for Advanced Transportation Technology (NIATT), University of Idaho, Moscow

    Google Scholar 

  • Modarres M (2006) Risk analysis in engineering. Techniques tools and trends. Taylor and Francis, Boca Raton

    Google Scholar 

  • Morgan GC, Rawlings GE, Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows. In: Proceedings of 1st Canadian Symposium on Geotechnique and Natural Hazards, vol 1, pp 225–236

  • NYDOT (2007) Rock slope rating procedure: geotechnical engineering manual GEM-15. NY State DOT, New York

    Google Scholar 

  • ODOT (2001) ODOT landslide and rockfall pilot study—final report. Geo-Hydro Section, HQ Geo-Hydro Unit, Salem

    Google Scholar 

  • Pack R, Boie K, Mather S, Farrell J (2006) UDOT rockfall hazard rating system: final report and user’s manual (Report UT-06.07). Utah State University, Logan

    Google Scholar 

  • Pantelidis L (2009a) Rock slope stability assessment through rock mass classification systems. Int J Rock Mech Min Sci 46(2):315–325. doi:10.1016/j.ijrmms.2008.06.003

    Article  Google Scholar 

  • Pantelidis L (2009b) System of quantitative and qualitative assessment of highway geotechnical assets failure hazard and relevant consequences (Title in Greek: Σύστημα ποιοτικής και ποσοτικής αξιολόγησης του κινδύνου αστοχίας γεωκατασκευών οδοποιίας και των συναφών επιπτώσεων). PhD thesis, Aristotle University of Thessaloniki, Greece, p 555

  • Pantelidis L (2009c) An alternative rock mass classification system for rock slopes. Bull Eng Geol Environ (online first). doi:10.1007/s10064-009-0241-y

  • Pierson LA, Van Vickle R (1993) Rockfall hazard rating system–participant’s manual. SNI International Resources Inc., Phoenix

    Google Scholar 

  • Pierson LA, Gullixson CF, Chassie RG (2001) Rockfall catchment area design guide—final report SPR-3(032). ODOT Research Group, Salem

    Google Scholar 

  • Pierson LA, Beckstrand DL, Black BA (2005) Rockfall hazard classification and mitigation system—final report. Landslide Technology, Portland

    Google Scholar 

  • Romana M (1991) SMR Classification. In: Proceedings of 7th international congress on rock mechanics, vol 2, pp 955–960

  • Russell CP, Santi P, Humphrey JD (2008) Modification and statistical analysis of the Colorado rockfall hazard rating system. Colorado School of Mines, Golden

    Google Scholar 

  • Uribe-Etxebarria G, Morales T, Urarte JA, Ibarra V (2005) Rock cut stability assessment in mountainous regions. Environ Geol 48(8):1002–1013. doi:10.1007/s00254-005-1323-1

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. TRB 176:11–33

    Google Scholar 

  • Wong CKL (1998) The new priority classification systems for slopes and retaining walls, GEO Report No.68. Geotechnical Engineering Office, Kowloon

    Google Scholar 

  • Woodard MJ, Shakoor A (2005) Development of a rockfall hazard rating matrix for Ohio. In: Proceedings of international symposium on geology and linear infrastructures. Lyon

  • Wyllie DC (1987) Rock slope inventory system. In: Proceedings of federal highways administration rockfall mitigation seminary

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lysandros Pantelidis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantelidis, L. A critical review of highway slope instability risk assessment systems. Bull Eng Geol Environ 70, 395–400 (2011). https://doi.org/10.1007/s10064-010-0328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-010-0328-5

Keywords

Mots clés

Navigation