Skip to main content

Advertisement

Log in

Engineering geology maps: landslides and geographical information systems

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

IAEG Commission No. 1—Engineering Geological Maps—is developing a guide to hazard maps. Scientists from 17 countries have participated. This paper is one of a series that presents the results of that work. It provides a general review of GIS landslide mapping techniques and basic concepts of landslide mapping. Three groups of maps are considered: maps of spatial incidence of landslides, maps of spatial–temporal incidence and forecasting of landslides and maps of assessment of the consequences of landslides. With the current era of powerful microcomputers and widespread use of GIS packages, large numbers of papers on the subject are becoming available, frequently founded on different basic concepts. In order to achieve a better understanding and comparison, the concepts proposed by Varnes (Landslide hazard zonation: a review of principles and practice, 1984) and Fell (Some landslide risk zoning schemes in use in Eastern Australua and their application 1992; Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272, 1994) are taken as references. It is hoped this will also add to the international usefulness of these maps as tools for landslide prevention and mitigation. Six hundred and sixty one papers and books related to the topic are included in the references, many of which are reviewed in the text.

Résumé

La Commission N°1 de l’AIGI ≪Cartes de géologie de l’ingénieur≫ réalise un guide sur les cartes d’aléas. Des scientifiques de 17 pays ont apporté leur contribution. Cet article est l’un d’une série d’articles relatant les travaux de cette Commission. Il présente les concepts de base de la cartographie de glissements de terrain ainsi qu’un panorama de l’apport des techniques SIG (Systèmes d’Information Géographique) à cette cartographie. Trois groupes de cartes ont été considérés: des cartes d’occurrence spatiale de glissements de terrain, des cartes d’occurrence spatio-temporelle et de prévision de glissements de terrain et des cartes d’évaluation des conséquences de glissements de terrain. A notre époque de développement de la micro-informatique et des logiciels SIG, de nombreuses publications sont produites sur ce sujet, avec différentes bases conceptuelles. Afin de faciliter compréhension et comparaisons, les concepts proposés par Varnes (Landslide hazard zonation: a review of principles and practice, 1984) et Fell (Some landslide risk zoning schemes in use in Eastern Australua and their application 1992; Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272, 1994) sont pris comme référence. On espère que le travail réalisé rendra plus facile l’utilisation de ces cartes comme outil de prévention et de limitation des effets des glissements de terrain. Six cent soixante une articles et ouvrages relatifs au sujet traité son référencés en bibliographie, nombre d’entre eux étant appelés dans le texte de l’article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abbot B, Bruce I, Savigny W, Keegan T, Oboni F (1998a) A methodology for the assessment of rockfall hazard and risk along linear transportation corridors. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1195–1200

  • Abbot B, Bruce I, Savigny W, Keegan T, Oboni F (1998b) Application of a new methodology for the management of rockfall risk along a railway. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1195–1200

  • Agili F, Bartolomei A, Casagli N, Canuti P, Catani F, Ermini L, Farina P, Kukavicic M, Mirannalti M, Righini G (2004) Coupling traditional methods and new technology contributions to landslide risk assessment in the Arno river basin. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 151–155

  • Agostoni S, Laffi R, Mazzocola D, Scieza E, Presbitero M (1998) Landslide inventory data base for an Alpine area, Lombardia, Italy. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 919–924

  • Aiello V, Barile A, Silvestri F, Pescatore TS, Pinto F (2004) An application of a GIS based methodology for the seismic zonation of slope stability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 327–335

    Google Scholar 

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124

    Google Scholar 

  • Alcántara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40

    Google Scholar 

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265

    Google Scholar 

  • Aleotti P, Chowdhury (1998) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44

    Google Scholar 

  • Aleotti P, Baldelli P, Polloni G (2000) Hydrogeological risk assessment of the Po River Basin (Italy). In: Landslides in research, theory and practice. Thomas Telford, London, pp 13–18

  • Alfoldi TT (1974) Landslide analysis and susceptibility mapping. In: Symposium on remote sensing and photo interpretation, 7th, Banff, Alberta, Proceedings of the International Society for Photogrammetry, Ontario, Canada, vol 1, pp 379–388

  • Al-Homoud AS, Masanat Y (1998) A classification system for the assessment of slope stability of terrain along highway routes in Jordan. Environ Geol 34(1):59–69

    Google Scholar 

  • Alonso EE (1976) Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique 26(3):453–472

    Google Scholar 

  • Amaral C, Furtado A (2004) Largescale quantitative landslide risk mapping at Favela da Formiga, Rio de Janeiro. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 293–296

    Google Scholar 

  • An P, Moon WM, Rencz A (1991) Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Can J Explor Geophys 27:1–11

    Google Scholar 

  • Anderberg MR (1973) Cluster analysis for applications. Academic, New York, p 359

  • Aniya M (1985) Landslide susceptibility mapping in the Amahata river basin, Japan. Ann Assoc Am Geogr 75(1):102–114

    Google Scholar 

  • Anonymous (1972) The preparation of maps and plans in terms of engineering geology. Quart J Eng Geol 5:297–397

    Google Scholar 

  • Anonymous (1976) Engineering geology maps: a guide to their preparation. The UNESCO Press, Paris

    Google Scholar 

  • Antoine P (1977) Refléxions sur la cartographie ZERMOS et bilan de expériences en cours. Bull Bur Rech geol min Sec. III (1-2), 9–20

  • Antonello G, Casagli N, Farina P, Fortuny J, Leva D, Nico G, Sieber AJ, Tarchi D (2003) A ground-based interferometer for the safety monitoring of landslides and structural deformations. In: International Geoscience Remote Sensing Symposium (IGARSS) 1:218–220

  • Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards Earth Syst Sci 2:3–14

    Google Scholar 

  • Arias A (1970) A measure of earthquake intensity. In: Hansen RJ (ed) Seismic design for nuclear power plants. Massachusetts Institute of Technology Press, Cambridge, pp 438–483

    Google Scholar 

  • Astaras T, Kalathas A, Oikonomidis D, Lambrinos N, Soulakellis N (1997) Delineation of landslides using GIS and digital image procesing techniques on multitemporal Landsat 5 TM images: a case study from the Pindus mountain, Greece. In: Spiteri A (ed) Remote Sensing ’96-integrated applications for risk assessment and disaster prevention for the Mediterranean, vol 215. A.A. Balkema, Rotterdam

  • Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385

    Google Scholar 

  • Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Processes Landforms 23:1185–1195

    Google Scholar 

  • Augusto Filho O (2004) Mass movements identification, modeling, analysis and mapping: some experiences in the southern of Brazil, Sao Paulo state. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 57–68

    Google Scholar 

  • Augusto Filho O, Magalhaies FS (2004) Identification of slope instability hazard areas in the Anchietalmigrantes Highway System, located in the Serra do Mar mountain range, Sao Paulo state, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 273–280

    Google Scholar 

  • Ayala-Carcedo FJ, Cubillo-Nielsen S, Alvarez A, Domínguez MJ, Laín L, Laín R, Ortíz G (2003) Large scales rock fall reach susceptibility maps in La Cabrera Sierra (Madrid) performed with GIS and dynamic analysis at 1:5.000. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):341–360

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31

    Google Scholar 

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Prefecture, Japan. Landslide 1:73–81

    Google Scholar 

  • Ayenew T, Barbieri G (2005) Inventory of landslides and susceptibility mapping in the Dessie area, northern Ethiopia. Eng Geol 77(1–2):1–15

    Google Scholar 

  • Babu GLS, Mukesh MD (2003) Risk analyse of landslides—a case study. Geotech Geol Eng 21:113–127

    Google Scholar 

  • Baeza C (1994). Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. PhD thesis, Department Ingeniería del Terreno y Cartográfica, UPC, Barcelona, Spain

  • Baeza C, Corominas J (1996) Assessment of shallow landslide susceptibility by means of statistical techniques. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 147–152

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Processes Landforms 26:1251–1263

    Google Scholar 

  • Baillifard F, Jaboyedov M, Rouiller D, Robichaud GR, Locat P, Locat J, Couture R, Hamel G (2004) Towards a GIS-based rockfall hazard assessment along the Quebec City Promontory, Quebec, Canada. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 207–214

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374

    Google Scholar 

  • Baldelli P, Aleotti P, Polloni G (1996) Landslide susceptibility numerical mapping at the Messina Straits crossing site, Italy. In: Senneset K (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 153–158

  • Baldwin JE II, Wright-Baldwin RJ, Benton DC (1986) Mapping slope hazard susceptibility in Aldercroft Heights following the July 1985 Lexington Reservoir fire, Santa Clara County, Calfornia [abs.]. In: Proceedings of the Association of Engineering Geologists, 29th annual meeting, San Francisco, 1986, abstracts and program, p 43

  • Bandeira APN, Coutinho RQ, Alheiros MM (2004) Landslide hazard map in an area of Camaragibe city, Pernambuco, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 303–310

    Google Scholar 

  • Barbolini M, Natale L, Savi F (2002) Effects of release conditions uncertainty on avalanche hazard mapping. Nat Hazards 25:225–244

    Google Scholar 

  • Bardinet C, Bournay E (1999) The use of 3-D mapping in geological research and risks analysis: evaluation of a water supply project in the Kathmandu-Melamchi Area. GeoJournal 49:159–163

    Google Scholar 

  • Barredo JI, Benavides A, Hervás J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. JAG 2(1):9–23

    Google Scholar 

  • Basma AA, Kallas N (2004) Modeling soil collapse by artificial neural networks. Geotech Geol Eng 22:427–438

    Google Scholar 

  • Bathurst JC, Crosta GB, García-Ruiz JM, Guzzetti F, Lenzi MA, Aragues SR (2003) DAMOCLES: debris-fall assessment in mountains catchments for local end-users. In: Rickenman D, Chen C (eds) Debris-flow hazard mitigation, prediction and assessment. MillPress Science, Rotterdam, pp 1073–1083

    Google Scholar 

  • Baynes FJ, Lee EM (1998) Geomorphology in landslide risk analysis, an interim report. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1129–1136

  • Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bildurdalur, NW Iceland. Nat Hazards Earth Syst Sci 4(1):117–131

    Google Scholar 

  • Berardino P, Costantini M, Franceschetti G, Iodice A, Pietranera L, Rizzo V (2003) Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng Geol 68(1–2):31–51

    Google Scholar 

  • Bernardos AG, Kaliampakos DC (2004) A methodology for assessing geotechnical hazards for TBM tunnelling—illustrated by the Athens Metro, Greece. Int J Rock Mech Min Sci 41:987–999

    Google Scholar 

  • Bernknopf F, Campbell RH, Brookshire DS, Shapiro CD (1988) A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation. Bull AEG, XXV 1:39–56

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bhattacharya G, Jana D, Ojha S, Chakraborty S (2003) Direct search for minimum reliability index of earth slopes. Comput Geotechn 30:455–462

    Google Scholar 

  • Bieniawski ZT (1979) The geomechanical classification in rock engineering applications. In: Proceedings of the 4th International Congress Rock Mechanics, Montreux, Balkema, Rotterdam, The Netherlands, vol 2, pp 41–48

  • Bieniawski ZT (1993) Classification of rock masses for engineering: the R.M.R. system and future trends. In: Hudson, Brown, Fairhurst, Hoek (eds) Comprehensive rock engineering. Pergamon Press, UK

  • Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97

    Google Scholar 

  • Binaghi E, Boschetti M, Brivio PA, Gallo I, Pergalani F, Rampini A (2004) Prediction of displacements in unstable areas using a neural model. Nat Hazards 32:135–154

    Google Scholar 

  • Birkeland KW, Landry CC (2002) Power-laws and snow avalanches. Geophys Res Lett 29(11):49-1–49-3

    Google Scholar 

  • Blanc RP, Cleveland GB (1968) Natural slope stability as related to geology, San Clemente Area, Orange and San Diego Counties, California. California Division of Mines and Geology Special Report 98, 19 pp

  • Bobrosky PT, Chung CJ, Garson D, Guthrie R (1998) Quantitative landslide hazard mapping on Northern Vancouver Island, BC, Canada. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2031–2037

  • Bonham-Carter GF (1994) Geographic information systems for geoscientists. Love Printing Service Ltd., Ontario

    Google Scholar 

  • Bonnard C, Forlati F, Scavia C (eds) (2004) Identification and mitigation of large landslide risks in Europe. Adv Risk Assess 336

  • Borga M, Dalla Fontana G, Da Ros D, Marchi L (1997) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2/3):81–88

    Google Scholar 

  • Borga M, Dalla Fontana G, Cazorzi F (2002) Análisis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268:56–71

    Google Scholar 

  • Borselli L, Magaldi D, Tallini M (1998) Assessment of hillslope instability hazard based on fuzzy mathematics. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 891–898

  • Bowman HN (1972) Natural Slope Stability in the City of Greater Woolongong. N.S.W. Geol Surv Recs 14(2):159–222

  • Brabb EE (1982) Preparation and use of a landslide susceptibility map for a county near San Francisco, California, USA. In: Sheko A (ed) Landslides and mudflows. Reports of Alma-Ata, International Seminar UNESCO/UNEP, Centre of International Projects, GKNT, Moscow, URSS, pp 407–415

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of the IVth ISL, Toronto, vol 1, pp 307–324

  • Brabb EE (1987) Analyzing and portraying geologic and cartographic information for land-use planning, emergency response, and decision making in San Mateo County, California. In: Proceedings of the GIS’87 San Francisco IInd annual international conference GIS, ASPRS, VA, USA, pp 362–374

  • Brabb EE (1993) Priorities for landslide during the international decade of hazard reduction. In: Wagner P, Novosad S (eds) Landslides: seventh international conference and Field workshop. P. 7–14. Balkema, Rotterdam, 320 pp

  • Brabb EE (1996) Hazard map are not enough. In: Chacón J, Irigaray C (eds) Proceedings of the Sexto Congreso Nacional y Conferencia Internacional sobre Riesgos Naturales, Ordenación del Territorio y Medio Ambiente 1, S.E.G.A.O.T. Granada, Spain

  • Brabb EE, Pampeyan EH (1972) Preliminary map of landslide deposits in San Mateo County, California. US Geological Survey Miscellaneous Field Studies, Map MF-344, scale 1:62,500

  • Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo County, California. US Geological Survey Miscellaneous Field Studies, Map MF-360, scale 1:62,500 (reprinted in 1978)

  • Brabb EE, Guzzetti M, Mark RK, Simpson RW Jr (1989) The extent of landsliding in northern New Mexico and similar semi-arid and arid regions. In: Sadler PM, Morton DM (eds) Landslide in a semi-arid environment. Inlan Geological Society, Riverside, pp 163–173

    Google Scholar 

  • Brabec B, Meister R, Stöckli U, Stoffel A, Stucki T (2001) RAIFoS: regional avalanche information and forecasting system. Cold Regions Sci Technol 33:303–311

    Google Scholar 

  • Brass A, Wadge G, Reading AJ (1991) Designing a geographical information system for the prediction of landsliding potential in the West Indies. In: Jones M, Cosgrove J (eds) Neotectonics and resources. Belhaven, London

  • Bromhead EN (2004) Landslide slip surfaces: their origins, behaviour and geometry. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London. Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602

  • Brunsden D (1999) Some geomorphological considerations for the future development of landslide models. Geomorphology 30:13–24

    Google Scholar 

  • Brunsden D, Prior DB (eds) (1984) Slope instability. Wiley, Chichester, 620 p

  • Buchroithner MF (2002) Metereological and earth observation remote sensing data for mass movements preparedness. Adv Space Res 29(1):5–16

    Google Scholar 

  • Bulut F, Boynukalin S, Tarhan F, Ataoglu E (2000) Reliability of isopleth maps. Bull Eng Geol Environ 58:95–98

    Google Scholar 

  • Burrough PA (1986) Principles of geographical information systems for land resource assessment. Oxford Universty Press, Oxford

    Google Scholar 

  • Burrough PA (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci 40:477–492

    Google Scholar 

  • Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst 113:37–52

    Google Scholar 

  • Burrough PA, Wilson JP, van Gaans PFM, Hansen AJ (2001) Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape Ecol 16:523–546

    Google Scholar 

  • Burton A, Bathurst JC (1998) Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ Geol 35(2/3):89–99

    Google Scholar 

  • Burton A, Arkell TJ, Bathurst JC (1998) Field variability of landslide model parameters. Environ Geol 35(2–3):100–114

    Google Scholar 

  • Calcaterra D, de Luca Tupputi Schinosa F, Fenelli GB (2004a) Rockfall hazard assessment at Mt. San Costanzo (Sorrento Peninsula, Italy). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 265–272

    Google Scholar 

  • Calcaterra D, de Riso R, Di Martire D (2004b) Assessing shallow debris slide hazard in the Agnano Plain (Naples, Italy) using SINMAP, a physically based slopestability model. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 177–186

    Google Scholar 

  • Campbell RH (1973) Isopleth map of landslide deposits. Point Duma Quadrangle, Los Angeles County, California: an experiment in generalizing and quantifying areal distribution of landslides. US Geological Survey Misc. Field Investigation Map MF-535. USGS, California

  • Canuti P, Casagli N, Moretti S, Leva D, Sieber AJ, Tarchi D (2002) Landslide monitoring by using ground-based radar differential interferometry. In: Rybár Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague, Balkema, Rotterdam, pp 523–528

  • Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45(7):907–919

    Google Scholar 

  • Canutti P, Casagli N, Catani F, Fanti R (2000) Hydrogeological hazard and risk in archaeological sites: some case studies in Italy. J Cult Herit 1:117–125

    Google Scholar 

  • Capolongo D, Refice A, Mankelow J (2002) Evaluating earthquake-triggered landslide hazard at the basin scale through GIS in the Upper Sele river valley. Surv Geophys 23:595–625

    Google Scholar 

  • Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72

    Google Scholar 

  • Carrara A (1983) Multivariate methods for landslide hazard evaluation. Math Geol 15:403–426

    Google Scholar 

  • Carrara A, Guzzetti F (eds) (1995) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht

  • Carrara A, Merenda L (1976) Landslides inventory in northern Calabria, southern Italy. Geol Soc Am Bull 87:1229–1246

    Google Scholar 

  • Carrara A, Pugliese E, Merenda L (1977) Computer-based data bank and statistical analysis of slope instability phenomena. Z Geomorph NF 21(2):187–222

    Google Scholar 

  • Carrara A, Catalano E, Sorriso-Valvo M, Really C, Osso I (1978) Digital terrain analysis for land evaluation. Geologia Applicata e Idrogeologia 13:69–127

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui M, Reichenbach P (1991a) GIS techniques and statistical models in evaluation landslide hazard. Earth Surf Processes Landforms 16:427–445

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzeti F, Pasqui V, Reichenbach P (1991b) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Processes Landforms 16:427–445. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 57–77

  • Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183

    Google Scholar 

  • Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 135-175

  • Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Processes Landforms 28(10):1125–1142

    Google Scholar 

  • Carrasco RM, Pedraza J, Martín-Duque JF, Mattera M, Sanz, MA, Bodoque JM (2003) Hazard zoning connected to torrential floods in the Jerte valley (Spain) by using GIS techniques. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):361–381

  • Casagli N, Farina P, Leva D, Nico G, Tarchi D (2002) Monitoring the Tessina landslide by a ground-based SAR interferometer and assessment of the system accuracy. In: International Geoscience Remote Sensing Symposium (IGARSS) 5:2915–2917

  • Casagli N, Farina P, Leva D, Nico G, Tarchi D (2003) Ground-based SAR interferometry as a tool for landslide monitoring during emergencies. In: International Geoscience Remote Sensing Symposium (IGARSS) 4:2924–2926

  • Casale R, Fantechi R, Flageollet JC (eds) (1994). Temporal occurrence and forecasting of landslides in the European Community. Final Report, vol 1, 559 pp, vol 2, pp 565–955, EUR 15805 EN, Programme EPOCH Contract 90 0025, Brussels, Belgium

  • Castelli M, Bonnard C, Durville JL, Forlati F, Poisel R, Polino R, Prat P, Scavia C (2002) The IMIRILAND project—impact of large landslides in the mountain environment: identification and mitigation of risk. In: Instability-planning and management. Thomas Telford, London

  • Castelli M, Amatruda G, Scavia C, Paro L, Forlati E (2004) The IMIRILAND methodology: a proposal for a multidisciplinary risk assessment procedure wlth respect to large landslide. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 229–236

    Google Scholar 

  • Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66(1–4 special issue):119–131

    Google Scholar 

  • Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962

    Google Scholar 

  • Chacón J (1994) Zonificación de Riesgos Geodinámicos: Estado del Arte. I Simposio Panamericano de Deslizamientos de tierra (first Panamerican symposium on landslides). Conferencia Relator Sesión 3°. Guayaquil, Ecuador

    Google Scholar 

  • Chacón J (1999) Riesgos Naturales en el borde suroriental de la depresión de Granada. In: Rivas P, Gomez-Caminero R (eds) Ciclos Naturales y Desarrollo Sostenido. Grupo Editorial Universitario, Granada, pp 71–134

    Google Scholar 

  • Chacón J, Corominas J (eds) (2003) Special issue on Landslides and GIS. Nat Hazards 30(3):263–512

    Google Scholar 

  • Chacón J, Irigaray C (1992) Metodología para la elaboración de mapas de riesgos de movimientos de ladera. In: III Congreso Geológico de España. Simposios, tomo Salamanca (Spain) vol 2, pp 620–627

    Google Scholar 

  • Chacón J, Irigaray C (1999a) Landslides: from hazard identification to mitigation of risks. In: Jon Ingleton (ed) Natural disaster management. A presentation to commemorate the international decade for natural disaster reduction. Páginas 61–64. Tudor Rose Holdings Limited, UK, p 320

  • Chacón J, Irigaray C (1999b) Previsión espacial de movimientos de ladera mediante S.I.G. Los Luis Laín Huerta (ed) Sistemas de Información Geográfica en los Riesgos Naturales y en el Medio Ambiente. ITGE, Madrid, pp 111–123

  • Chacón J, Irigaray C, Fernández T (1992a) Análisis regional de movimientos de ladera y riesgos derivados mediante sistemas de información geográfica. I Congreso: Los sistemas de información geográfica en la gestión territorial. Asociación Española de Sistemas de Información Geográfica y Territorial, Madrid, pp 355–360

    Google Scholar 

  • Chacón J, Irigaray C, Fernández T (1992b) Metodología para la cartografía regional de movimientos de ladera y riesgos asociados mediante un Sistema de Información Geográfica. III Simposio Nacional sobre taludes y laderas inestables, La Coruña, vol I, pp 121–133

  • Chacón J, Méneroud J-P, Irigaray C, Boussouf S, Calvino A (1992c) Análisis comparativo de metodologías para la elaboración de cartografías de exposición a los movimientos de ladera: aplicación al sector de Menton (Francia). III Simposio Nacional sobre taludes y laderas inestables, La Coruña, Spain, vol I, pp 95–106

  • Chacón J, Irigaray C, Fernández T (1993a) Methodology for large scale landslide hazard mapping in a G.I.S. In: Wagner, Novosad (ed) Landslides. Seventh international conference and field workshop on landslides, Bratislava, Slovakia. In: Landslides. Balkema, Rotterdam, pp 77–82

  • Chacón J, Irigaray C, Fernández T (1993b) Análisis y cartografía a gran escala de factores condicionantes de movimientos de ladera mediante un S.I.G. V Reunión Nacional de Geología Ambiental y Ordenación del Territorio. Tomo II, Murcia, Spain, pp 585–594

  • Chacón J, Irigaray C, Fernández T (1994a) Large to middle scale landslides inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS 7th International IAEG Congress, Lisboa, Portugal, vol VI, Balkema, Rotterdam, pp 4669–4678

  • Chacón J, Irigaray C, Fernández T (1994b) Metodología para el análisis y cartografía de movimientos de ladera y riesgos asociados mediante un SIG. III Congreso AESIG, III-4, Madrid, Spain, pp 1–15

  • Chacón J, Irigaray C, Fernández T, Boussouf S (1994c) Análisis y cartografía a escalas mediana y grande de movimientos de ladera y riesgos asociados mediante un S.I.G. I Simposio Panamericano de Deslizamientos de tierra (first Panamerican symposium on landslides), Guayaquil, Ecuador, vol I, pp 77–82

  • Chacón J, Irigaray C, Fernández T (eds) (1996a) Landslides. In: Eight international conference and field workshop on landslides, Granada–Barcelona–Madrid, Spain. Balkema, Rotterdam, p 393

  • Chacón J, Irigaray C, El Hamdouni R, Fernández T (1996b) From the inventory to the risk analysis: improvements to a large scale G.I.S. method. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rótterdam, pp 335–342

  • Chacón J, Irigaray C, El Hamdouni R, y Fernández T (1996c) Consideraciones sobre los riesgos derivados de los movimientos del terreno, su variada naturaleza y las dificultades de su evaluación. In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, vol I, Granada, Spain, pp 407–418

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R, Lamas F (1998) Previsión de zonas inestables en las Cordilleras Béticas: factores determinantes y activadores, inventario de movimientos y análisis de susceptibilidad, peligrosidad y riesgo. I Congreso Andaluz de Carreteras, 10–13, vol II, Granada, Spain, pp 1817–1822

  • Chacón J, El Hamdouni R, Irigaray C, Delgado A, Reyes E, Fernández T, García AF, Sanz de Galdeano C, y Keller EA (2001) Valores de encajamiento de la red fluvial deducidos a partir del estudio de travertinos del valle de Lecrín y curso bajo del Guadalfeo (SO de Sierra Nevada, Granada). In: Sanz de galdeano C, Peláez A, López AC (eds) La cuenca de Granada: Estructura, Tectónica Activa, Sismicidad, Geomorfología y dataciones existentes. CSIC—Universidad de Granada, Spain, pp 29–39

  • Chacón J, Irigaray C, Fernández T, El Hamdouni R (2003) Susceptibilidad a los movimientos de ladera en el sector central de la Cordillera Bética. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, Madrid, Spain, serie Medio Ambiente, no. 4, pp 83–96

  • Chang YS, Park HD (2004) Development of a web-based geographic information system for the management of borehole and geological data. Comput Geosci 30:887–897

    Google Scholar 

  • Chardon AC (1999) A geographic approach of the global vulnerability in urban area: case of Manizales, Colombian Andes. GeoJournal 49:197–212

    Google Scholar 

  • Chau KT, Lo KH (2004) Hazard assessment of debris flows for Leung King Estate of Hong Kong incorporating GIS with numerical simulation. Nat Hazards Earth Syst Sci 4(1):103–116

    Google Scholar 

  • Chau KT, Tang YF, Wong RHC (2004a) GIS based rockfall hazard map for Hong Kong. Paper 3B13 SINOROCK2004 Symposium. Int J Rock Mech Min Sci 41(3), CD-ROM

  • Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004b) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30:429–443

    Google Scholar 

  • Chen C-Y, Chen T-C, Yu F-C, Hung F-Y (2004a) A landslide dam breach induced debris flow—a case study on downstream hazard areas delineation. Environ Geol:20, DOI 10.1007/s00254-004-1137-6

  • Chen KS, Wei C, Chang SC (2004b) Locating landslide using multi-temporal satellite images. Adv Space Res 33:296–301

    Google Scholar 

  • Chi KH, Park NW, Lee K (2002a) Identification of landslide area using remote sensing data and quantitative assessment of landslide hazard. In: IGARSS2002: IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: integrating our view of the planet, New York, USA, pp 2856–2858

  • Chi KH, Park NW, Chung CF (2002b) Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. In: Symposium of geospatial theory, processing and applications, Ottawa, 6 pp

  • Chleborad AF (2000) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. US Geological Survey Open File Report 00-469, Department of Interior, USA, p 29

  • Chowdhury RN (1984) Recent developments in landslide studies: probabilistic methods-state-of-art-report. In: Proceedings of the IVth ISL, Toronto, vol 1, pp 209–228

  • Chowdhury RN (1996) Aspects of risk assessment for landslides. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, A.A. Balkema, Rotterdam, vol 1, pp 183–189

  • Chowdhury R, Flentje P (1996) Geological and lands instability mapping using G.I.S. package as a building block for the development of a risk assessment procedure, vol 1, pp 177–182. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, A.A. Balkema, Rotterdam, vol 1, pp 263–269

  • Chowdhury R, Flentje P (1998) Effective urban landslide hazard assessment. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 871–877

  • Chowdhury R, Flentje P (2003) Role of slope reliability analysis in landslide risk management. Bull Eng Geol Environ 62:41–46

    Google Scholar 

  • Chung CF, Fabbri AG (1993) Representation of geoscience data for information integration. J Non-Renewable Resour 2(2):122–139

    Google Scholar 

  • Chung CF, Fabbri AG (1998) Three Bayesian prediction models for landslide hazard. In: Buscianti (ed) Proceedings of the International Association of Mathematical Geology, Ischia, Italy, pp 204–211

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sen 65(12):1388–1399

    Google Scholar 

  • Chung CF, Fabbri AG (2001) Prediction models for landslide hazard using fuzzi set approach. In: Marchetti M, Rivas V (eds) Geomorphology and environmental impact assessment. A.A. Balkema, Rotterdam, pp 31–47

    Google Scholar 

  • Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):451–472

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175

    Google Scholar 

  • Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364

    Google Scholar 

  • Codebo L, Enea CR, Del Monaco G, Margottini C (2000) Landslide susceptibility in the Cardoso Slope (Versilla-Italy). Consequences of the flash flood of 19th June 1996. In: Landslides in research, theory and practice. Thomas Telford, London, pp 293–298

  • Coe JA, Michael JA, Crovelli RA, Zavage WA (2000) Preliminary map showing landslides densities, mean recurrence intervals, and exceedance probabilities as determined from historic records, Seattle, Washington. USGS Open-File report 00-303 on line edition, 12 pp, 2 tables, 10 figures and 1 map. US Department of Interior, USA

  • Coe JA, Godt JW, Baum RL, Bucknam RC, Michael A (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 69–78

    Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14

    Google Scholar 

  • Collins TK (1987) Discussion to DeGraff JV (1985) Using isopleth maps on landslide deposits as a tool in timber sale planning. Bull Assoc Eng Geol 24(1):117–120

    Google Scholar 

  • Collotta T, Saggio G (2004) Landslides hazard curves method: practical suggestions. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 185–190

    Google Scholar 

  • Connell LD, Jayatilaka CJ, Nathan R (2001) Modelling flow and transport irrigation catchments, spatial application of subcatchment model. Water Resour Res 37(4):965–977

    Google Scholar 

  • Cook JR, McGown A, Hurley G, Choy LE (1998) The role of engineering geology in the hazard zonation of a Malaysian highway. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 221–229

  • Corominas J, Santacana N (2003) Stability analysis of the Vallcebre translational slide, Eastern Pyrenees (Spain) by means of a GIS. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):473–485

  • Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):421–435

  • Corominas J, Moya J, Masachs I, Baeza C, Hurlimann M (2004) Reconstructing recent activity of Pyrenean landslides by means of dendrogeomorphological techniques. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 363–371

    Google Scholar 

  • Cotecchia V (1978) Systematic reconnaissance, mapping and registration of slope movements. Bull Int Assoc Eng Geol 17:5–37

    Google Scholar 

  • Cross M (1998) Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study. In Maund JG, Eddlestonb M (eds) Geohazards in engineering geology. The Geological Society, London, Engineering Geology Special Publications 15, pp 247–261

  • Cross M (2002) Landslide susceptibility maps using the matrix assessment approach: a Derbyshire case study. In Griffiths JS (ed) Mapping in Engineering Geology. The Geological Society London, Key Issues in Earth Sciences 1:267–282

  • Crovelli RA (2000) Probability models for estimation of number and costs of landslides. USGS Open-File Report 00-249, US Department of Interior, USGS, 18 pp

  • Crozier MJ (1986) Landslides: causes, consequences and environment. Surry Hills, Croom Helm Pub, London, p 192

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation. Special Report 247. Transportation Research Board, Washington, pp 36–75

  • Culshaw M (2004) The first engineering geological publication in the UK? Quart J Eng Geol Hydrogeol 37:227–231

    Google Scholar 

  • Czirók A, Somfai KE, Vicsek T (1997) Fractal scaling and power-law landslide distribution in a micromodel of geomorphological evolution. Geol Rundsch 86:525–530

    Google Scholar 

  • Dai FC, Lee CF (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59(3/4):253–266

    Google Scholar 

  • Dai FC, Lee CF (2002a) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228

    Google Scholar 

  • Dai FC, Lee CF (2002b) Landslide on natural terrain—physical characteristics and susceptibility mapping in Hong Kong. Mt Res Dev 22(1):40–47

    Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Processes Landforms 28:527–545

    Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2000) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Google Scholar 

  • Dai FC, Lee CF, Wang SJ (2003) Characterisation of rainfall-induced landslides. Int J Remote Sens 24(23):4817–4834

    Google Scholar 

  • Davies WE (1974a) Landslide susceptibility map of part of the Bridgeville 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-274, scale 1:24,000, 8 pp

  • Davies WE (1974b) Landslide susceptibility map of part of the Canonsburg 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-276, scale 1:24,000, 8 pp

  • Davies WE (1974c) Landslide susceptibility map of part of the Donora 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-277, scale 1:24,000, 8 pp

  • Davies WE (1974d) Landslide susceptibility map of part of the Freeport 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-278, scale 1:24,000, 8 pp

  • Davies WE (1974e) Landslide susceptibility map of the McKeesport 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-280, scale 1:24,000, 8 pp

  • Davies WE (1974f) Landslide susceptibility map of the Monongahela 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-281, scale 1:24,000, 8 pp

  • Davies WE (1974g) Landslide susceptibility map of part of the New Kensington East 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-283, scale 1:24,000, 8 pp

  • Davies WE (1974h) Landslide susceptibility map of part of the New Kensington West 7-1/2 minute quadrangle, Allegheny County and vicinity. US Geological Survey Open-File Report 74-284, scale 1:24,0000, 8 pp

  • Davies WE (1974i) Landslide susceptibility map of the Braddock 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-273, scale 1:24,000, 8 pp

  • Davies WE (1974j) Landslide susceptibility map of part of the Curtisville 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-276, scale 1:24,000, 8 pp

  • Davis TJ, Keller CP (1997a) Modelling and visualizing multiple spatial uncertainties. Comput Geosci 23(4):397–408

    Google Scholar 

  • Davis TJ, Keller CP (1997b) Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. Int J Geograph Inf Sys 11(5):409–434

    Google Scholar 

  • Davis AM, Mason PJ, Mc Moore JM (2000) Three dimensional visualisation of landslides in SE Spain using a digital elevation model (DEM) and orthophotography. In: Landslides in research, theory and practice. Thomas Telford, London, pp 403–408

  • Day FC, Lee CF (2001) Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Can Geotech J 38(5):911–923

    Google Scholar 

  • De Araújo PC, Riedel PS, Santoro J, Vedovello R, Tominaga LK, Brollo MJ, Tavares R (2004) Analysis of susceptibility to gravitational mass flows based on conditional probability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 251–256

    Google Scholar 

  • Dearman WR (1991) Engineering geological mapping. Butterworth-Heinemann, Oxford

    Google Scholar 

  • DeGraff JV (1985) Using isopleth maps of landslide deposits as a tool in timber sale planning. Bull Assoc Eng Geol XXII 4:445–453

    Google Scholar 

  • DeGraff JV (1987) Reply to Collins TK (1987) Discussion Bull Assoc Eng Geol 24(1):121–124

  • DeGraff JV, Canuti P (1988) Using isopleth mapping to evaluate landslide activity in relation to agricultural practice. Bull Int Assoc Eng Geol 38:61–71

    Google Scholar 

  • DeGraff JV, Romesburg HC (1980) Regional landslide—susceptibility assessment for wildland management: a matrix approach. In: Coates DR, Vitek JD (eds) Chap. 19, pp 401–414

  • DeGraff J, Brabb EE, King AP (1991) Landslide hazard assessment. In: Primer on natural hazards management in integrated regional development planning. Department of Regional Development and Environment. General Secretariat, OAS, Washington, DC, Chap. 10, 32 pp

  • De la Ville N, Chumaceiro Diaz A, Ramirez D (2002) Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustain 4:221–229

    Google Scholar 

  • Del Gaudio V, Wasowski J (2004) Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy). Soil Dyn Earthquake Eng 24:915–928

    Google Scholar 

  • Delmonaco G, Margottini C, Marhni G, Paolini S, Puglisi C, Falconi V, Spizzichino D (2004) Slope dynamics acting on Villa del Casale (Piazza Armerina, Sicily). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 357–362

    Google Scholar 

  • Dempster A (1968) A generalization of Bayesian inference. J Roy Stat Soc, Ser B 30:205–247

    Google Scholar 

  • Den J (1982) Control problems of grey systems. System and Control Letters 1(4):228–294

    Google Scholar 

  • Dhakal AS, Amada T, Aniya M (1999) Landslide hazard mapping and the application of GIS in the Kulekhani watershed, Nepal. Mt Res Dev 19(1):3–16

    Google Scholar 

  • Dhakal AS, Amada T, Aniya M (2000a) Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Eng Remote Sens 66(8):981–989

    Google Scholar 

  • Dhakal AS, Amada T, Aniya M (2000b) Databases and geographic information systems for medium scale landslide hazard evaluation: an example from typical mountain watershed in Nepal. In: Landslide in research, theory and practice. Thomas Telford, London, pp 457–462

  • Dias EC, Zuquette LV (2004) Methodology adopted for probabilistic assessment of landslides in Ouro Preto, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 287–292

    Google Scholar 

  • Dietrich WE, Montgomery DR (1998) A digital terrain model for mapping shallow landslide potential. Technical report NCASI. Downloads from http://socrates. berkeley.edu/~geomorph/shalstab/

  • Dikau R, Brunsden D, Schrott L, Ibsen ML (1996a) Landslide recognition, identification, movement and causes. Wiley, Chichester

    Google Scholar 

  • Dikau R, Cavallin A, Jager S (1996b) Databases and GIS for landslide research in Europe. Geomorphology 15(3–4):227–239

    Google Scholar 

  • Dobrev ND, Boykova AD (1998) Landslide hazard assessment in tectonic active grabens. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2107–2112

  • Dobrovolny E (1971) Landslide susceptibility in and near anchorage as interpreted from topographic and geologic maps, in The great Alaska earthquake of 1964–Geology volume. Publication 1603. U.S. Geological Survey Open-File Report 86-329, National Research Council, Committee on the Alaska Earthquake, National Academy of Sciences, USA, pp 735–745

  • Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Appenines (Valnerina; Perugia, Italy). Eng Geol 63:277–289

    Google Scholar 

  • Drennon CB, Schleining WG (1975) Landslide hazard mapping in a shoestring. J Surv Mapping Div—ASCE 101(1):107–114

    Google Scholar 

  • Dymon JR, Jessen MR, Lovell LR (1999) Computer simulation of shallow landsliding in New Zealand hill country. IAG 1(2):122–131

    Google Scholar 

  • Einstein HH (1988) Special lecture: landslide risk assessment procedure. In: Proceedings of the Vth ISL Lausanne, vol 2, pp 1075–1090

  • El Hamdouni R (2001) Estudio de movimientos de ladera en la cuenca del río Ízbor mediante un SIG: contribución al conocimiento de la relación entre tectónic activa e inestabilidad de vertientes. 429 pp and 10 maps 1:25.000, Unpublished PhD thesis. Department of Civil Engineering. University of Granada, Spain

  • El Hamdouni R, Irigaray C, Chacón T, y Fernández T (1996a) Los movimientos de ladera de la cuenca del río Albuñuelas (Granada, España). In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada. Spain, vol I, pp 443–453

  • El Hamdouni R, Irigaray C, Chacón J, Fernández T (1996b) Landslides inventory and determining factors in the Albuñuelas river basin (Granada, Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 21–30

    Google Scholar 

  • El Hamdouni R, Irigaray C, Pérez J, Fernández T, Chacón J (1997a) Exposición a riesgos derivados de los movimientos de ladera en el entorno de Albuñuelas (Granada): incidencia de las lluvias de Noviembre a Enero de 1996/97. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada. Spain, vol I, pp 15–26

  • El Hamdouni R, Irigaray C, Pérez J, Fernández T, Sanz de Galdeano C, Chacón J (1997b) Inventario de movimientos de ladera en el entorno del embalse de Béznar (Granada. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada. Spain, vol II, pp 731–740

  • El Hamdouni R, Irigaray C, Chacón J, Sanz de Galdeano C, Fernández T (2001) Movimientos de ladera y tectónica activa en la cuenca del río Izbor (Granada). V Simposio nacional sobre taludes y laderas inestables, Madrid, Spain, vol III, pp 1231–1240

  • El Hamdouni R, Irigaray C, Fernández T, Sanz de Galdeano C, Chacón J (2003) Susceptibilidad a los movimientos de ladera en el borde S.O. de Sierra Nevada (España): Implicación de la tectónica activa como factor determinante. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, Madrid, Spain, pp 155–168. serie Medio Ambiente, No. 4

  • El Hamdouni, Irigaray C, Fernández T, Sanz de Galdeano C, Chacón J (2000) Slope movements and active tectonics in the Izbor River basin (Granada, Spain). In: Bromhead E, Dixon N, Ibson ML (eds) Landslides in research, theory and practice, vol I, Thomas Telford, London, pp. 501–506

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzi relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Google Scholar 

  • Ercanoglu M, Gokceoglu C, Van Asch THWJ (2004) Landslide susceptibility Zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23

    Google Scholar 

  • Erley D, Köckelman WJ (1981) Reducing landslide hazards: a guide for planners. Planning Advisory Report 359. American Planning Association, Chicago, USA, 29 pp

  • Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Google Scholar 

  • Esaki T, Xie MW, Zhou GY, Mitani Y (2001) Monte Carlo method for locating and evaluating 3D critical slope slip based on GIS Database. In: Sijing W, Bingjunm F, Zhongkui L (eds) Frontiers on rock mechanics and sustainable development in 21st century. AA Balkema, Rotterdam, pp 17–21

    Google Scholar 

  • Evans NC, King JP (1998) The natural terrain landslide study: debris avalanche susceptibility. Technical Note TN 1/98. Planning Division, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, 96 pp

  • Evans NC, Huang SW, King JP (1997) The natural terrain landslide study phases I and II. Special Project Report, SPR 5/97. Planning Division, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, 119 pp

  • Evans NC, King JP, Woods NW (1998) Natural terrain landslide hazards in Hong Kong. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, Canada. A.A. Balkema, Rotterdam, pp 1003–1010

  • Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Eng Geol 61(1):29–51

    Google Scholar 

  • Eyers R, Moore J, Hervás J, Liu JG (1998) Integrated use of Landsat TM and SPOT panchromatic imagery for landslide mapping: case histories from southeast Spain. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Engineering Geology Special Publication 15. Geological Society, London, pp 133–140

  • Fabbri AG, Chung CJ (1996) Predictive spatial data analysis in the geosciences. In: Unwinn D, Fisher M, Scholten HJ (eds) Spatial analytical perspectives on GIS. Taylor & Francis Group, London, 271 pp

  • Fabbri AG, Chung CJ (2003) Is prediction of future landslides possible with a GIS? In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):487–499

  • Fall M, Azzam R (1998) Application de la géologie de l’ingenieur et de SIG à l’étude de la stabilité des versants côtier, Dakar, Senegal. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1011–1018

  • Family F, Vicsek T (eds) (1991) Dynamic of fractal surfaces. World Scientific, Singapore

  • Favre JL, Resig S, Leroi E (2000) Conditional landslide hazard mapping. In: Melchers RE, Stewart MG (eds) Applications of statistics and probability—civil engineering and risk analysis. A.A. Balkema, Rotterdam, pp 255–262

    Google Scholar 

  • Fell R (1992) Some landslide risk zoning schemes in use in Eastern Australua and their application. In: Proceedings of the VIth Australian–New Zealand conference on geomechanics society, Christchurch, NZ, pp 505–512

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk assessment. In: Cruden D, Fell R (eds) Landslide risk assessment. Proceedings of the international workshop on landslide risk assessment, Honolulú. Balkema, Rotterdam, pp 51–110

  • Fell R (2000) Landslide risk management concepts and guidelines—Australian Geomechanics Society Sub-Committee on Landslide Risk Management In: Landslides, International Union of Geological Sciences, pp. 51–93

  • Fernández T (2001) Cartografía, análisis y modelado de la susceptibilidad a los movimientos de ladera en macizos rocosos mediante SIG: aplicación a diversos sectores del Sur de la provincia de Granada. 648 pp, 9 maps. Unpublished PhD Thesis. University of Granada, Spain

  • Fernández T, Irigaray C, Chacón J (1994) Large scale analysis and mapping of determinant factors of landsliding affecting rock massifs in the eastern Costa del Sol (Granada, Spain) in a GIS. In: Oliveira, Rodriguez, Coelho, Cunha (eds) 7th International IAEG Congress, Lisboa, Portugal, vol VI. Balkema, Rotterdam, pp 4649–4658

  • Fernández T, Irigaray C, y Chacón J (1996a) Inventory and analysis of landslides determinant factors in Los Guajares Mountains, Granada (Southern Spain). In: Senneset (ed) Landslides, ISL’96, Trondheim, Norway, vol 3. Balkema, Rótterdam, pp 1891–1896

  • Fernández T, Irigaray C, y Chacón J (1996b) G.I.S. Analysis and mapping of landslides determinant factors in the Contraviesa area (Granada, Southern Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 141–151

  • Fernández T, Irigaray C, y Chacón J (1996c) Inventario de movimientos de ladera en la vertiente Norte de la Contraviesa (Granada) mediante un S.I.G. In: Chacón J, y Rosúa JL (eds) 1a Conferencia internacional: Sierra Nevada Conservación y Desarrollo Sostenible, Granada, Spain, vol I, pp 297–317

  • Fernández T, Irigaray C, y Chacón J (1996d) Inventario de movimientos de ladera en el borde Noreste de la Sierra de los Guájares (Granada) mediante un S.I.G. In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada, Spain, vol I, pp 419–441

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (1997a) Validación de un método de cartografía de movimientos de ladera y susceptibilidad mediante un S.I.G. en un sector de las cuencas de los ríos Guadalfeo e Izbor (Granada). In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol I, pp 51–63

  • Fernández T, Irigaray C, y Chacón J (1997b) Aplicación de un Sistema de Información Geográfica a la cartografía, análisis y modelización de movimientos de ladera, Madrid. Spain. Mapping no. 35, pp 44–49

  • Fernández T, Brabb E, Delgado F, Martin-Algarra A, Irigaray C, Estévez A, Chacón Montero J (1997c) Rasgos geológicos y movimientos de ladera en el sector Izbor-Velez Benaudalla de la cuenca del río Guadalfeo (Granada). In: Alonso E, Corominas J, Chacón J, Oteo, C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol II, pp 795–808

  • Fernández T, Irigaray C, El Hamdouni R, Martínez, C, Quesada D, Chacón J (1998) Previsión de los movimientos de ladera asociados a las lluvias del invierno 1996–97 en el sector de Izbor-Vélez de Benaudalla (Granada) en relación con la susceptibilidad del terreno. I Congreso Andaluz de Carreteras 10–13, Granada, Spain, vol II, pp 1823–1828

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2000) Metodología para la elaboración de cartografía de susceptibilidad a los movimientos de ladera mediante SIG”. VI Congreso Nacional de Topografía y Cartografía TOPCART 2000, Madrid, Spain, pp 610–620

  • Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS: application to the Contraviesa Area (Granada, Spain). In: Chacón J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):297–308

  • Fernández T, Irigaray C, El Hamdouni R, y Chacón J (2004a) Diseño gráfico de un mapa de susceptibilidad a los movimientos de ladera. Actas TopCart 2004: VIII Congreso Nacional de Topografía y Cartografía. Madrid Edición CD, 12 pp

  • Fernández T, Irigaray C, El Hamdouni R, y Chacón J (2004b) Las pendientes naturales de los macizos rocosos del Sur de la provincia de Granada. Actas XI Congreso deMétodos Cuantitativos, Sistemas de Información Geográfica y Teledetección. Murcia, Spain

  • Fernández-Steeger TM, Rohn J, Czurda K (2002) Identification of landslide areas with neural nets for hazard analysis. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 163–168

  • Ferrier N, Emdad Haque C (2003) Hazards risk management methodology for emergency managers: a standardized framework for application. Nat Hazards 28:271–290

    Google Scholar 

  • Flageollet JC (1994) The time dimension in the mapping of earth movements. In: Casale R, Fantechi R, Flageollet JC (eds) Temporal occurrence and forecasting of landslides in the European community. Final Report, EUR 15805 EN, Programme EPOCH Contract 90 0025, Brussels, Belgium, vol 1, pp 7–70

  • Fookes PG (1997) Geology for engineers: the geological model, prediction and performance. Quart J Eng Geol 30:293–424

    Google Scholar 

  • Forlati F, Ramasco M, Susella GF (2004) Landslide hazard management in a densely populated Alpine region. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 215–220

    Google Scholar 

  • Foxx M (1984) Slope failures in the Felton quadrangle, 1981–1983 and analysis of factors that control slope failure susceptibility of the Monterey Formation. Santa Cruz, University of California, Masters thesis

  • Franciss FO (2004) Landslide hazard assessment on hilly terrain. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 143–150

    Google Scholar 

  • Franks CAM, Koor NP, Campbell SDG (1998) An integrated approach to the assessment of slope stability in urban areas in Hong Kong using thematic maps. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1103–1111

  • Fransen PJB, Phillips CJ, Fahey BD (2001) Forest road erosion in New Zealand: overview. Earth Surf Processes Landforms 26(2):165–174

    Google Scholar 

  • Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73(3–4):277–295

    Google Scholar 

  • Garcia RAC, Zêzere JL (2004) Abadia Basin (Torres Vedras, Portugal) a case study of landslide susceptibility assessment and validation. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 137–146

    Google Scholar 

  • García AF, Zhu Z, Ku TL, Sanz de Galdeano C, Chadwick OA, Chacón J (2003) Tectonically driven landscape development within the eastern Alpujarran Corridor, Betic Cordillera, SE Spain (Almería). Geomorphology 50:83–110

    Google Scholar 

  • García AF, Zhu Z, Ku TL, Chadwick OA, Chacón (2004) An incision wave in the geologic record, Alpujarran Corridor, southern Spain (Almería). Geomorphology 60(2004):37–72

    Google Scholar 

  • Garland GG, Olivier MJ (1993) Predicting landslides from rainfall in a humid, subtropical region. Geomorphology 8:165–173

    Google Scholar 

  • Giafferi JL (1998) L’aléa movement de terrain dans les études de dangers des barrages. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1079–1087

  • Giardino M, Giordan D, Ambroglio S (2004) GIS technologies for data collection, management and visualization of large slope instabilities: two application in the Western Alps. Nat Hazards Earth Syst Sci 4(2):197–211

    Google Scholar 

  • Giasi CI, Masi P, Cherubini C (2003) Probabilistic and fuzzy reliability analysis of a sample slope near Aliano. Eng Geol, 67: 391–402

    Google Scholar 

  • Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? In: Glade T, Albini P, Frances F (eds) Use of historic data in natural hazard assessments: advances in natural and technological hazards research 17:153–168

  • Glade T (2002) Ranging scales in spatial landslide hazard and risk analysis. In: Brebbia CA (ed) Risk analysis III, management information systems, vol 5. WIT Press, Ashurst, pp 719–728

  • Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157:1059–1079

    Google Scholar 

  • Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1–4):147–161

    Google Scholar 

  • Goltz C (1996) Multifractal and entropic properties of landslides in Japan. Geol Rundschau (Hist Arch IJ Earth Sci) 85(1):71–84

    Google Scholar 

  • Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27

    Google Scholar 

  • Gómez H, Bradshaw RP, Mather PM (2000) Monitoring the distribution of shallow landslide-prone areas using remote sensing, DTM and GIS: a case study from the tropical Andes of Venezuela. In: Casonova JL (ed) Remote sensing in the 21st century: economic and environmental applications, Valladolid, Spain. A.A. Balkema, Rotterdam

  • Gomez B, Page M, Bak P, Trustum N (2002) Self-organized criticality in layered, lacustrine sediments formed by landsliding. Geol Soc Am Bull 30(6):519–522

    Google Scholar 

  • Gorsevski PV, Gessler PE, Jankowski P (2003) Integrating a fuzzi k-means classification and a Bayesian approach for spatial prediction of landslide hazard. J Geograph Syst 5:223–251

    Google Scholar 

  • Gostelow TP, Gibson JR (1995) CORINE land cover data: its application to regional landslide susceptibility mapping in Basilicata, Italy, using GIS. In: Proceedings of the conference on vegetation and slopes: stabilisation, protection and ecology, Oxford, pp 222–237

  • Griffith JS (compiler) (2001) Land surface evaluation for engineering practice. Engineering Geology Special Publication 18. The Geological Society, London

  • Griffith JS (compiler) (2002) Mapping in engineering geology. Key issues in earth sciences, vol 1. The Geological Society, London, 287 pp

  • Griffiths JS, Matherm AE, Hart AB (2002) Landslide susceptibility in the Rios Aguas catchment, SE Spain. Quart J Eng Geol Hydrogeol 35(1):9–17

    Article  Google Scholar 

  • Gritzner ML, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37(1–2):149–165

    Google Scholar 

  • Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslide in a humid, tropical environment. Bull Int Assoc Eng Geol 16:13–18

    Google Scholar 

  • Günther A, Carstensen A, Pohl W (2002) GIS application in slope stability assessment. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 175–187

  • Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazard Earth Syst Sci 4:95–102

    Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the Earth and associated phenomenon. Princenton University Press, USA

  • Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107

    Google Scholar 

  • Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4(2):213–232

    Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Google Scholar 

  • Guzzetti F, Cardinali M, Reinchenbach P, Carrara A (2000) Comparing landslide maps: a case study in the Upper River Basin, Central Italy. Environ Manage 25(3):247–263

    Google Scholar 

  • Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183

    Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Ardizzone F, Galli M (2003a) The impact of landslides in the Umbria region, central Italy. Nat Hazards Earth Syst Sci 3:469–486

    Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003b) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manage 34(2):191–208

    Google Scholar 

  • Haigh MJ, Rawat JS, Bartarya SK (1988) Entropy minimizing landslide systems. Curr Sci 57(18):1000–1002

    Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602

  • Harp EL, Reid ME, Michael JA (2004) Hazard analysis of landslides triggered by Typhoon Chata’an on July 2, 2002, in Chuuk State, Federated States of Micronesia. US Geological Survey Open-File Report 2004-1348. US Department of Interior, Science for a Changing World, USGS, 22 pp

  • Hartlen J, Viberg L (1988) General report: evaluation of landslide hazard. In: Proceedings of the Vth ISL, Lausanne, vol 2, pp 1037–1057

  • Hayne MC, Gordon D (2001) Regional landslide hazard estimation, a GIS/decision tree analysis: Southeast Queensland, Australia. In: Ho KKS, Li KS (eds) Geotechnical engineering meeting society’s needs, proceedings, Hong Kong, China, pp 115–121

  • He YP, Xie H, Cui P, Wei FQ, Zhong DL, Gardner JS (2003) GIS-based mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environ Geol 45:286–293

    Google Scholar 

  • Heckerman D (1986) Probabilistic interpretation of MYCIN’s certainty factor. In: Kanal LN, Lemmer JF (eds) Uncertainty in artificial intelligence. Elsevier, New York, pp 298–311

    Google Scholar 

  • Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3:505–514

    Google Scholar 

  • Hervás J, Rosin PL (1996) Landslide mapping by textural analysis of ATM data. In: Proceedings of the 11th thematic conference on applied geologic remote sensing, Las Vegas, Nevada, Michigan, USA, vol 2, pp 394–402

  • Hervás J, Rosin PL, Fernández-Renau A, Gómez JA, León C (1996) Use of airborne multispectral imagery for mapping landslides in Los Vélez district (south-eastern Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 353–362

  • Highland LM (1997) Landslide hazard and risk: current and future directions for the United Stated Geological Survey’s landslide Program. In: Cruden DM, Fell R (eds) Landslide risk assessment. International Workshop Risk Assessment, IUGS Working Group Landslides, Honolulu, Hawaii, USA, pp 207–213

  • Hines JW (1997) Fuzzy and neural approaches in engineering. Wiley, New York, 210 pp

    Google Scholar 

  • Hinojosa JA, Leon CO (1978) Unstable soil mapping in Spain. In: Proceedings of 3rd International Cong. IAEG, Madrid, section I, (I), pp. 217–227

  • Hiura H, Fukuoka H (1993) Fractal structure of spatial distribution of landslides in Hokkaido Island, Japan. In: Novosad S, Wagner P (eds) Landslides. Proceedings of the 7th I.C.F.L. Bratislava (Eslovakia Rep.). Balkema, Rotterdam, pp 29–34

  • Hiura H, Fukuoka H (1996) An analysis of the transition of the distribution of the shallow slides in use of the fractal dimension and the Weibull distribution function. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Proceedings of the 8th I.C.F.L. Granada (Spain). Balkema, Rotterdam, pp 363–372

  • HMSO (1996) Landslide investigation and management in Great Britain: a guide for planners and developers. Department of the Environment, London, 120 pp

  • Ho CL, Miles SB (1997) Deterministic zonation of seismic slope instability: an application of GIS. In: Frost JD (ed) Spatial analysis in soil dynamics and earthquake engineering. Geotechnical special publication 67, ASCE, New York, pp 87–102

  • Hoek E (2002) Practical rock engineering. 312 pp. Online free download from http://www.rocscience.com /hoek/PracticalRockEngineering.asp

  • Hofmeister RJ, Miller DJ (2003) GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In: Rickenman D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. MillPress Science, Rotterdam, pp 1141–1149

    Google Scholar 

  • Hollestein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307

    Google Scholar 

  • Hroch Z, Krycl P, Sebesta J (2002) Landslide hazards in North Bohemia. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 207–212

  • Humbert M (1977) La cartographie ZERMOS. Modalités d´établissement des cartes des zones esposes à des risques liés aux mouvements du sol et du sous-sol. Bull Bur Rech Geol Min III (1–2):5–8

  • Hungr O (1997) Some methods of landslide hazard intensity mapping. In: Cruden D, Fell R (eds) Landslide risk assessment. Proceedings of the international workshop on landslide risk assessment, Honolulú. Balkema, Rotterdam, pp 215–226

  • Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Landslides. Proceedings of the VIth international symposium of landslides, Lausanne, vol 1, pp 3–35

  • Hutchinson JN (1992) Landslide hazard assessment. In: Proceedings of the VIth ISL, Christchurch, vol 1, pp 1805–1841

  • Irigaray C (1990).Cartografía de riesgos geológicos asociados a movimientos de ladera en el sector de Colmenar (Málaga). Unpublished Post-graduate Thesis. University of Granada, 390 pp

  • Irigaray, C (1995) Movimientos de ladera: inventario, análisis y cartografía de susceptibilidad mediante un Sistema de Información Geográfica: Aplicación a las zonas de Colmenar(Málaga), Rute (Córdoba) y Montefrío (Granada). Unpublished PhD Thesis. University of Granada, Spain

  • Irigaray C, Chacón J (2003) Métodos de análisis de la susceptibilidad a los movimientos de ladera mediante S.I.G. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, 194 pp, serie Medio Ambiente, no. 4. Madrid, Spain

  • Irigaray C, Fernández T, Chacón J (1994) GIS landslide inventory and analysis of determinant factors in the sector of Rute (Córdoba, Spain). In: Oliveira, Rodriguez, Coelho, Cunha (ed) 7th International IAEG Congress, Lisboa, Portugal, vol VI. Balkema, Rotterdam, pp 4659–4668

  • Irigaray C, Fernández T, Chacón J (1996a) Comparative analysis of methods for landslide susceptibility mapping. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 373–384

  • Irigaray C, Chacón J, Fernández T (1996b) Methodology for the analysis of landslide determinant factors by means of a G.I.S. Application to the Colmenar area (Malaga, Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 163–172

    Google Scholar 

  • Irigaray C, Fernández T, y Chacón J (1996c) Inventory and analysis of determining factors by a GIS in the northern edge of the Granada basin (Spain). In: Senneset K (ed) Landslides, vol 3. Balkema, Rotterdam, pp 1915–1921

  • Irigaray C, Fernández T, y Chacón J (1996d) Metodología de análisis de factores determinantes de movimientos de ladera mediante un S.I.G. Aplicación al Sector de Rute (Córdoba, España). In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada, Spain, vol II, pp 55–74

  • Irigaray C, Fernández T, y Chacón J (1997a) Validación de un método de análisis de la susceptibilidad a los movimientos de ladera. aplicación al sector de Rute. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol I, pp 39–49

  • Irigaray C, Fernández T, y Chacón J (1997b) Aplicación de un SIG al análisis del medio físico en el sector de Rute (Córdoba). Cuaternario y Geomorfología 11(1–2):99–112

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (1998a) Practical validation of a methodology for landslide susceptibility assessment and mapping in the Betic Cordillera (Spain). In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress II, Vancouver. A.A. Balkema, Rotterdam, pp 1057–1064

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (1998b) Análisis de la susceptibilidad a los movimientos de ladera y comprobación de su utilidad en el sector de Rute-Iznájar (Córdoba, Granada). I Congreso Andaluz de Carreteras, 10–13, Granada, Spain, vol II, pp 1829–1834

  • Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping. A case study. Earth Surf Processes Landforms 24:537–544

    Google Scholar 

  • Irigaray C, Lamas F, El Hamdouni R, Fernández, T, Chacón J (2000) The importance of precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81

    Google Scholar 

  • Irigaray C, Fernández T, Chacón J (2003) Preliminary rock-slope-susceptibility assessment using GIS and the SMR classification. In: Chacón J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):309–324

  • Irigaray, C Fernández T El Hamdouni R Chacón J (2006) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Natural Hazards, ISSN: 0921-030X (Paper) 1573-0840 (Online) DOI: 10.1007/s11069-006-9027-8

  • Iwahashi J, Watanabe S, Furuya T (2003) Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan. Geomorphology 50:349–364

    Google Scholar 

  • Jaboyedoff M, Baillifard F, Phillippossian F, Rouiller JD (2004a) Assessing fracture occurrence using “weighted fracturing density”: a step forward estimation rock instability hazard. Nat Hazard Earth Syst Sci 4:83–93

    Google Scholar 

  • Jaboyedov M, Baillifard F, Couture R, Locat J, Locat P (2004b) New insight of geomorphology and landslide prone area detection using digital elevation model(s). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 191–198

    Google Scholar 

  • Jaboyedov M, Baillifard F, Couture R, Locat J, Locat P (2004c) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 199–206

    Google Scholar 

  • Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156

    Google Scholar 

  • Jhingran V, Mukherjee D (1996) Engineering geological approach for the assessment of landslide hazard in the Himalayan terrain for the highway. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L, Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 239–244

  • Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transp Res Record 1411:9–17

    Google Scholar 

  • Jibson RW, Baum RL (1999) Assessment of landsalide hazards in Kaluani and Maakua Gulches, Oahu, Hawaii, following the 9 May 1999 Sacred Falls Landslide. USGS Science for a Changing World. http://www.pubs.usgs.gov./of/1999/ofr-99-0364/. Open-File Report 99-364. US Department of Interior, Denver Federal Center, Colorado, 10 pp

  • Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard maps. Open-file report 98-113. Department of Interior, USGS, USA, 17 pp

  • Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3/4):271–289

    Google Scholar 

  • Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogrammetry Remote Sens 57:39–52

    Google Scholar 

  • Kawakami H, Saito Y (1984) Landslide risk mapping by a quantification method. In: Proceedings of the IVth ISL Toronto, Canada, vol 2, pp 535–540

  • Kienholz H (1978) Maps of geomorphology and natural hazard of Grindewald, Switzerland, scale 1:10,000. Arctic Alpine Res 10(2):169–184

    Google Scholar 

  • Kim JW, Park SS, Kim CS, Lee Y (2004) The efficient web-based mobile GIS service system through reduction of digital map. In: Laganà A et al. (ed) ICCSA 2004, LNCS 3043. Springer, Berlin Heidelberg New York, pp 410–417

    Google Scholar 

  • Kimura H, Yamaguchi Y (2000).Detection of landslide areas using satellite radar interferometry. Photogrammetric Eng Remote Sens 66(3):337–344

    Google Scholar 

  • Kovácik M, Paudits P (1998) Map of relative susceptibility to mass movements of the Tatras region, Slovakia. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress II, Vancouver. A.A. Balkema, Rotterdam, pp 1019–1024

  • Kubota T (1996) Study of the fractal dimension and geological condition of landslides. In: Chacón J, Irirgaray C, Fernández T(eds) Landslides. Proceedings of the conference (th ICFL. Granada, Madrid, Barcelona (Spain). Balkema, Rotterdam, pp 385–392

  • Kumar P, Shima UN (1998) Landslide hazard zonation in Joshimath-Jelam area, Garhwal Himalaya, U.P. India. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 925–932

  • Laird RT, Perkins JB, Bainbridge DA, Baker JB, Boyd RT, Huntsman D, Staub PE, Zucker MB (1979) Quantitative land-capability analysis. US Geological Survey Professional Paper 945. US Department of Interior, Washington, 115 pp

  • Lan HX, Zhou CH, Wang LJ, Zhang HJ, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol: 20 (in press)

  • Landry J (1979) Cartes ZERMOS. Zones exposés à des risques liés aix mouvements du sol et du sous-sol. Région de Long-le-Saunier à Oiligny (Jura). Orlèans, Bureau de Recherche Géologique et Minière, 14 pp, 1 map

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34(2):223–232

    Google Scholar 

  • Lee S, Choi W (2001) Construction of geological hazard spatial DB and development of geological hazard spatial information system. In: Proceedings of the IGARSS2001: scanning the present and resolving the future. IEEE, New York, pp 1693–1695

  • Lee S, Choi UC (2003) Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosci J 7(3):243–252

    Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Google Scholar 

  • Lee S, Ryu (2004) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression and artificial neural network methods: case study of Yongin, Korea. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 91–96

    Google Scholar 

  • Lee EM, Doornkamp JC, Brunsden D, Noton NH (1987) Ground movement in Ventnor, Isle of Wight. Geomorphological Services Ltd., UK, 65 pp

  • Lee S, Ryu J, Min K, Choi W, Won J (2000) Development and application of landslide susceptibility analysis techniques using geographic information system (GIS). In: Stein TI (ed) IGARSS 2000: IEEE 2000 International Geoscience and Remote Sensing Symposium 1:319–321

  • Lee CF, Ye H, Yeung MR, Shan X, Chen G (2001a) AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes 24(3):150–159

    Google Scholar 

  • Lee S, Chang B, Choi W, Shin E (2001b) Regional susceptibility, possibility and risk analysis of landslide in Ulsan metropolitan city, Korea. In: Proceedings of the IGARSS 2001: scanning the present and resolving the future. IEEE, Australia, pp 1690–1692

  • Lee S, Ryu J-H, Min K, Won J-S (2001c) Development of two artificial neural network for landslide susceptibility analysis. In: Proceedings of the IGARSS 2001: scanning the present and resolving the future. IEEE, Australia, pp 2364–2366

  • Lee S, Chwae U, Min K (2002a) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46(3–4):149–162

    Google Scholar 

  • Lee S, Choi J, Min K (2002b) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Google Scholar 

  • Lee S, Choi J, Chwae U, Chang B (2002c) Landslide susceptibility analysis using weight of evidence. In: IGARSS2002: IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: integrating our view of the planet, New York, USA, pp 2865–2867

  • Lee S, Ryu J-H, Lee M-J, Won J-S (2003) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ Geol 44:820–833

    Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004a) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302

    Google Scholar 

  • Lee S, Choi J, Ryu H (2004b) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 85–90

    Google Scholar 

  • Lekkas E, Lozios G, Bertakis G, Vasilopoulou S (1995) Management of geoenvironmental problems (natural hazards). A method for landslide hazard assessment using geographical information systems (G.I.S.). In: Proceedings of the XV Congress of the Carpatho-Balcan Geological Association, special publication of the Geological Society of Greece no. 4/3, Athens, Greece, pp 996–1001

  • Lekkas E, Vasilopoulou S, Hadzinakos J (1998) GIS aided landslide management in Ropoto, Trikala, Greece: Raster-vector data treatment. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG & Env. Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1759–1763

  • Leone F, Aste JP, Leroi E (1996a) L’evaluation de la vulnerabilité aux mouvements de terrain: pour une meilleure quantification du risqué. Revue de Geographie Alpine 84(1):35–46

  • Leone F, Favre JL, Leroi E (1996b) Vulnerability assessment of element exposed to mass-movement: working toward a better risk perception. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 263–269

  • Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and developments. In: Kaare Senneset (ed) Proceedings of the VIIth ISL, Trondheim, vol 1, pp 35–52

  • Leroi E (1997) Landslide risk mapping: problems, limitations and developments. In: Cruden DM, Fell R (eds) Landslide risk assessment. A.A. Balkema, Rotterdam, pp 239–250

  • Leroi E, Rouzeau O, Scanvic JY, Weber CC, Vargas C (1992) Remote sensing and landslide hazard mapping in the Colombian Andes. Episodes 15(1):32–35

    Google Scholar 

  • Leroueil S, Locat J (1998) Slope movements—geotechnical characterization, risk assessment and mitigation. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 933–944

  • Lessing P, Kulander BR, Wilson BD, Dean SL, Woodring SM (1976) West Virginia landslides and slide-prone areas. West Virginia Geol Econ Surv, Environ Geol Bull 15:64

    Google Scholar 

  • Li S, Feng X-T, Zhao H, Feng S, Liu L, Zhao H (2004) Forecast analysis of monitoring data for high slopes on three dimensional geological information and an intelligent algorithm. SINOROROCK2004 symposium. Int J Rock Mech Min Sci 41(3):1–6

    Google Scholar 

  • Liener S, Kienholz H, Liniger M, Krummenacher BK (1996) SLIDISP—a procedure to locate landslide prone areas. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 279–284

  • Lin ML, Tung CC (2003) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77

    Google Scholar 

  • Lipmann RP (1987) An introduction to computing with neural nets. IEEE Acoust Speech Signal Processing Mag 4:4–22

  • Liu ZQ (2003) Fuzzi cognitive maps in GIS data analysis. Soft Comput 7:394–401

    Google Scholar 

  • Liu X, Lei J (2003) A method for assessing regional debris flow risk: an application in Zhaoton of Yunnan province (SW China). Geomorphology 52:181–191

    Google Scholar 

  • Liu X, Yue ZQ, Tham LG, Lee CF (2002) Empirical assessment of Debris flow risk on a regional scale in Yunnan Province, Southwestern China. Environ Manage 30(2):249–264

    Google Scholar 

  • Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the three gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61:171–187

    Google Scholar 

  • Lu P, Rosenbaum MS (2003) Artificial neural networks and grey systems for the prediction of slope stability. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):383–398

  • Luzi L (1995a) GIS for slope stability zonation in the Fabriano area, Central Italy. MSc Thesis, ITC, Enschede, Netherlands. Unpublished

  • Luzi L (1995b) Application of favourability modelling to zoning of landslide hazard in the Fabriano Area, Central Italy. In: Proceedings of the first joint European conference and exhibition on geographical information, The Hague, Netherlands, pp 398–402

  • Luzi L, Pergalani F (1996a) Application of statistical and GIS techniques to slope instability zonation (1:50.000 Fabriano geological map sheet). Soil Dyn Earthquake Eng 15(2):83–94

    Google Scholar 

  • Luzi L, Pergalani F (1996b) A methodology for slope vulnerability zonation using a probabilistic method. In: Chacón J, Irigaray C (eds) Proceedings of the Sexto Congreso Nacional y Conferencia Internacional sobre Riesgos Naturales, Ordenación del Territorio y Medio Ambiente, vol 1, S.E.G.A.O.T., Granada, Spain, pp 537–556

  • Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia–Italy). Nat Hazards 20:57–82

    Google Scholar 

  • Luzi L, Pergalani F (2000) A correlation between slope failures and accelorometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dyn Earthquake Eng 20:301–313

    Google Scholar 

  • Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–316

    Google Scholar 

  • Luzi G, Pieraccini M, Mecatti D, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42(11):2454–2466

    Google Scholar 

  • Maharaj RJ (1993) Landslide processes and landslide susceptibility analysis from an upland watershed—a case study from St.Andrew, Jamaica, West Indies. Eng Geol 34(1–2):53–79

    Google Scholar 

  • Mahr T, Malgot J (1978) Zoning maps for regional and urban development based on slope stability. In: Proceedings of the IIIrd I.A.E.G. Congress I, Spain 1:14:124–137

  • Mallamud BD (2003) A universal probability distribution for landslide events. Geophys Res Abstr 5:04399

    Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Processes Landforms 29:687–711

    Google Scholar 

  • Malet JP, Hartig S, Calais E, Maquaire O (2000) Apport du GPS suiví en continu des mouvements de terrain. Application au glissement-coulée de Super-Sauze (Alpes-de-Haute-Provence, Frnace). C.R Acad Sci de la Terre et des Planétes 331:175–182

  • Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslide: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43:33–54

    Google Scholar 

  • Malkawi AIH, Saleh B, Al-Sheriedeh MS, Hamza MS (2000) Mapping of landslide hazard zones in Jordan using remote sensing and GIS. J Urban Plng Dev ASCE 126(1):1–17

    Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 156:636–638

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, Nueva York

  • Maquaire O, Thiery Y, Malet P, Weber C, Puissant A, Wania A (2004) Current practices and assessment tools of landslide vulnerability in mountainous basins identification of exposed elements with a semiautomatic procedure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 171–176

    Google Scholar 

  • Marble DF (1984) Geographic information systems: an overview. In: Proceedings of the Pecora 9 Conference, Sioux Falls, SD, pp 18–24)

  • Marchi L, Dalla Fontana G (2000) Erosion area assessment in mountainous basing using GIS methods. In: Haigh M, Krecek J (eds) Environmental reconstruction in headwater areas. NATO Advances Science Institutes Series, Sub-Ser2, Environmental Security, vol 68. Kluwer, Dordrecht, pp 123–136

  • Marker B (1998) Incorporation of information on geohazards into the planning process. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 385–389

  • Marquínez J, Menéndez R, Farias P, Jiménez M (2003) Predictive GIS-based model of rock fall activity in mountain cliffs. In Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):341–360

  • Martínez-Casasnovas JA (2003) A spatial information technology approach for the mapping and quantification of gully erosion. Catena 50:293–308

    Google Scholar 

  • Marzorati S, Luzi L, De Amicis M (2002) Rock falls induced by earthquakes: a statistical approach. Soil Dyn Earthquake Eng 22:565–577

    Google Scholar 

  • Mason PJ, Rosenbaum MS (2002) Geohazard mapping for predicting landslides: an example from the Langhe Hills in Piemonte, NW Italy. Quart J Eng Geol Hydrogeol 35:317–326

    Google Scholar 

  • Mason PJ, Rosenbaum MS, Mc Moore JM (1998) Digital image texture analysis for landslide hazard mapping. In: Maund JG, Eddleston M (eds) Geohazard in engineering geology. Geological Society, London, Engineering Geology Special Publications 15, pp 297–305

  • Mayer K, Múller-Koch K, von Poschinger A (2002) Dealing with landslide hazards in the Bavarian Alps. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 417–421

  • McClelland DE, Foltz RB, Wilson WD, Cundy TW, Heinemann R, Saurbier JA, Schuster RL (1997) Assessment of the 1995 & 1996 floods and landslides on the Clearwater National Forest, Part I: Landslide Assessment, A Report to the regional Forester Northern Region U.S. Forest Service

  • McClung DM (2002a) The elements of applied avalanche forecasting. Part I: the human issues. Nat Hazards 25:111–129

    Google Scholar 

  • McClung DM (2002b) The elements of applied avalanche forecasting. Part II: the physical issues and the rules of applied avalanche forecasting. Nat Hazards 26:131–146

    Google Scholar 

  • McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133

    Google Scholar 

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Google Scholar 

  • McKean J, Buechel S, Gaydos L (1991) Remote-sensing and landslide hazard assessment. In: 8th thematic conference geology remote sensing (ERIM), Denver, CO, USA, vol 2, pp 729–742

  • Mehrotra GS, Sarkar S, Kanungo DP, Mahadevaiah K (1996) Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim, Himalaya. J Geol Soc India 47(4):491–498

    Google Scholar 

  • Mejía-Navarro M, Wohl EW, Oaks SD (1994) Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10:331–354

    Google Scholar 

  • Menéndez-Duarte R, Marquínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43:117–136

    Google Scholar 

  • Méneroud JP (1978) Cartographie des risques dans les Alps-Maritimes (France). In: Proceedings of the IIIrd I.A.E.G. Congress, II, Chap. 46, pp 98–107

  • Méneroud JP, Olivier G (1978) Eboulement et chutes de pierres sur les routes. Methode de cartographie. Groupe d’Etudes des Falaises (GEF). Rapport de recherche LPC no. 80, L.C.P.Ch., Paris, France, 63 pp

  • Méneroud JP, Calvino A (1976) Carte ZERMOS. Zones exposés à des risques liés aix mouvements du sol et du sous-sol à 1:25,000 region de la Moyenne Vesubie (Alpes- Maritimes.Orléans, Bureau de Recherche Géologique et Minière, 11 pp, 1 map

  • Michel-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns Community. Nat Hazards 30:233–249

    Google Scholar 

  • Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthquake Eng 18:305–323

    Google Scholar 

  • Miles SB, Keefer DK, Nyerges TL (2000) A case study in GIS-based environmentl model validation using earthquake-induced landslide hazard. In: Heuvelink GBM, Lemmens MJP (eds) Accuracy 2000, proceedings, Delft University Press, Delft, pp 481–492

  • Miller DJ (1995) Coupling GIS with physical models to assess deep-seated landslide hazards. Environ Eng Geosci 1(3):263–276

    Google Scholar 

  • Miller DJ, Sías J (1998) Deciphering large landslides: linking hydrogeological, groundwater and slope stability models through GIS. Hydrol Processes 12:923–941

    Google Scholar 

  • Moon V, Blackstock H (2004) A methodology for assessing landslide hazard using deterministic stability models. Nat Hazards 32:111–134

    Google Scholar 

  • Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mozzini E, Pesci A (2003) Global positioning systems and digital photogrammetry for the monitoring of massmovements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121

    Google Scholar 

  • Moreiras SM (2004) Landslide incidence zonation in the Rio Mendoza valley, Mendoza province, Argentina. Earth Surf Processes Landforms 29:255–266

    Google Scholar 

  • Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza valley, Argentina. Geomorphology 66:345–357

    Google Scholar 

  • Morgan GC, Rawlings GE, Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows. In: Geotechnique and natural hazard. Proceedings of the 1992 symposium on geohazard. Bi/Tech, Toronto, pp 225–236

  • Msilimba GG, Holmes PJ (2005) A landslide hazard assessment and vulnerability appraisal procedure: Vunguvungu/Banga catchment, Northern Malawi. Nat Hazards 34:199–216

    Google Scholar 

  • Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585

    Google Scholar 

  • Nagarajan R, Roy A, Kumar RV, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58:275–287

    Google Scholar 

  • Nagler T, Rott H, Kamelger A (2002) Analysis of landslides in Alpine areas by means of SAR interferometry. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:198–200

  • Nakagawa H, Takahashi T (1997) Estimation of a debris flow hydrograph and hazard area. In: Chen CL (ed) Debris-flow hazards mitigation: mechanics, prediction & assessment. ASCE, New York, pp 64–67

  • Neaupane KM, Achet SH (2004) Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol 74:213–226

    Google Scholar 

  • Neulands H (1976) A prediction model of Landslip. Catena 5:215–30

    Google Scholar 

  • Newman EB, Paradis AR, Brabb EE (1978) Feasibility and cost of using a computer to prepare landslide susceptibility maps of the San Francisco Bay region, California. US Geological Survey Bulletin 1443, USGS, USA, 23 pp

  • Newmark NM (1965) Effects of earthquakes on dam and embankments. Geotechnique 15:139–160

    Article  Google Scholar 

  • Nilsen TH, Wright RH (1979) Relative slope stability and land-use planning in the San Francisco Bay region, California. US Geological Survey Professional Paper 944, US Department of Interior, Washington, 103 pp

  • Nilsen TH, Brabb EE (1977) Landslides. In: Borcherdt RD (ed) Studies for seismic zonation of the San Francisco Bay Region. US Geological Survey Professional Paper 941-A, 96 pp

  • O'Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804

    Google Scholar 

  • Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343

    Google Scholar 

  • Ojeda-Moncayo J, Locat J, Couture R, Leroueil S (2004) The magnitude of landslides: an overview. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 379–384

    Google Scholar 

  • Omar H, Schaefer VR, Salsidu MS, Daud M, Zohadie MB, Muniandy R (2004) An algorithm for cut slope evaluation: geological rating and potential instability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 281–286

    Google Scholar 

  • Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32(1–2):81–100

    Google Scholar 

  • Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36(3–4):325–334

    Google Scholar 

  • Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1157–1165

  • Paganini M, Palazo F, Arino O, Manunta P, Ferretti A, Gomtier E, Wunderle S, Pasquali P, Strozzi T, Zilger J, van Westenlo C (2003) SLAM, the development of an EO service to support the legal obligations of Swiss and Italians Geological Risk Services in landslide risk forecasting and prevention. In: Proceedings of the IGARSS2003: IEEE international geoscience and remote sensing symposium. Learning from earth’s shapes and sizes, pp 2422–2425

  • Pan KL, Chen CH, Fu CH (1998) A regional assessment of destructive debris flow along New Central Cross-Highway in Taiwan. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2039–2044

  • Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth C 26(9):697–703

    Google Scholar 

  • Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng Geol 58:251–270

    Google Scholar 

  • Park NW, Chi KH (2003) A probabilistic approach to predictive spatial data fusion for geological hazard assessment. In: Proceedings of the IGARSS2003: IEEE International Geoscience and Remote Sensing Symposium. Learning from earth’s shapes and sizes, pp 2425–2427

  • Pasuto A, Soldati M (1999) The use of landslide units in geomorphological mapping: an example in the Italian Dolomites. Geomorphology 30:53–64

    Google Scholar 

  • Patel AN, Mehta HS (1980) Application of digital techniques in identifying landslide prone areas. In: Proceedings of the IIIrd international symposium on landslides, Calcuta, vol I/5, pp 25–27

  • Patt AG, Schrag DP (2003) Using specific language to describe risk and probability. Clim Change 61:17–30

    Google Scholar 

  • Paudits P, Bednarik M (2002) Using GIS in evaluation of landslide susceptibility in Handlovska kotlina basin. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 437–441

  • Pelletier JD, Malamud BD, Blodgett T, Turcotte DL (1997) Scale-invariance of soil moisture and its implications for the frequency-size distribution of landslides. Eng Geol 48:255–268

    Google Scholar 

  • Perotto-Baldiviezo HL, Thurow TL, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis in steeplands, southern Honduras. Agric Ecosyst Environ 103:165–176

    Google Scholar 

  • Peuquet DJ, Marble DF (1990) Introductory readings in geographic information systems. Taylor & Francis, London, 371 pp

  • Pike RJ (1991) The geometric signature: quantifying landslide-terrain types from digital elevation models. Math Geol 20(5):491–511

    Google Scholar 

  • Pike RJ (2000) Geomorphometry—diversity in quantitative surface analysis. Prog Phys Geogr 4(1):1–20

    Google Scholar 

  • Pistocchi A, Zani O (2001) Integrated hydrologic and landslide risk management in the Romagna River Bassin using cartographic predictive modeling. In: Falconer RA, Blain WR (eds) River basin management. International series on progress in water resources, vol 5. WIT Press, Ashurst, pp 273–282

  • Pomeroy JS (1974a) Landslide susceptibility and processes in the Maryland Coastal Plain. Schultz AP, Southworth CS (eds) Landslides of eastern North America. US Geological Survey Circular 1008, Chap. 2, pp 5–9

  • Pomeroy JS (1974b) Landslide susceptibility map of the Emsworth 7-1/2 minute quadrangle, Allegheny County, PA. US Geological Survey Open-File Report 74-75, 15 pp, 1 pl., 7 figs., scale 1:24,000

  • Pomeroy JS (1974c) Landslide susceptibility map of part of the Mars 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-114, 18 pp, 1 pl., 7 figs., scale 1:24,000

  • Pomeroy JS (1974d) Landslide susceptibility map of part of the Valencia 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-116, 18 pp, 1 pl., scale 1:24,000

  • Pomeroy JS (1974e) Landslide susceptibility map of the Glenshaw 7-1/2 minute quadrangle, Allegheny County, Pennsylvania. US Geological Survey Open-File Report 74-118, 18 pp, 1 pl., 7 figs., scale 1:24,000

  • Pomeroy JS (1978) Isopleth maps of landslide deposits, Washington county, Pennsylvania—a guide to comparative slope stability. US Geological Survey Misc. Field Investigation Map MF-1010. USGS, California

  • Prina E, Bonnard Chr, Vulliet L (2004) Vulnerability and risk assessment of a mountain road crossing landslides. Riv Ital Giotec 2:67–79

    Google Scholar 

  • Radbruch DH (1970) Map of relative amounts of landslides in California. US Geological Survey Open-File Report 70-1485, 36 pp, map scale 1:500,000. US Geological Survey Open-File Report 85-585

  • Radbruch DH, Crowther KC (1973) Map showing areas of estimated relative susceptibility to landsliding in California. US Geological Survey Miscellaneous Geologic Investigations Map I-747, scale 1:1,000,000

  • Radbruch DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982) Landslide overview map of the conterminous United States. US Geological Survey Miscellaneous Field Studies Map MF-771, 1 sheet, scale 1:7,500,000. Washington Division of Geology and Earth Resources, USA

  • Raetzo H, Lateltin O, Tripet JP (2002) Landslides and evaluation of triggering factors, hazard assessment practice in Switzerland. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 455–460

  • Rafaelli SG, Montgomery DR, Greenberg HM (2001) A comparison of thematic mapping of erosional intensity to GIS-driven process models in an Andean drainage basin. J Hydrol 244:33–42

    Google Scholar 

  • Rautela P, Lakhera RC (2000) Landslide risk analysis between Giri and Tons rivers in Himachal Himalaya (India). IAG 2(3/4):153–160

    Google Scholar 

  • Refice A, Capolongo D (2002) Probabilistic modelling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28:735–749

    Google Scholar 

  • Refice A, Guerriero L, Bovenga F, Wasowski J, Veneziani N, Atzori S, Ferrari AR, Marsella M (2000) Detecting landslide activity by SAR interferometry. European Space Agency (Special Publication) ESA SP 461:1176–1188

  • Refice A, Bovenga F, Guerriero L, Wasowski J (2001) DInSAR applications to landslide studies. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:144–146

  • Remondo J, González-Díez A, Díaz de Terán JR, Cendrero A (2003a) Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba valley, Guipúzcoa (Spain). In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):267–279

  • Remondo J, González-Díez A, Dííaz de Terán JR, Cendrero A, Fabbri A, Chung CJF (2003b) Validation of landslide susceptibility maps examples and applications from a case study in Northern Spain. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):437–449

  • Remondo J, Bonachea J, Cendrero A (2004) Probabilistic landslide hazard and risk mapping on the basis of occurrence and damages in the recent past. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 125–130

    Google Scholar 

  • Rengers N, Soeters R, Van Westen CJ (1992) Remote sensing and GIS applied to mountain hazard mapping. Episodes 15(1):36–45

    Google Scholar 

  • Rezig S, Favre JL, Leroi E (1996) The probabilistic evaluation of landslide risk. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 351–355

  • Rizzo V (2002) GPS monitoring and new data on slope movements in the Maratea Valley(potenza, Basilicata). Phys Chem Earth 27:1535–1544

    Google Scholar 

  • Rizzo V, Tesauro M (2000) SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Phys Chem Earth B 25(9):771–780

    Google Scholar 

  • Rocha GC (2004) Landslide risk mapping methodology applied to medium size urbanities in Brazil: case study of Juiz de Fora town, Minas Gerais state. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 297–302

    Google Scholar 

  • Rodríguez Ortiz JM, Prieto C, Hinojosa JA (1978) Regional studies on mass movements in Spain. In: Proceedings of the IIIrd I.A.E.G. Congress I, 1:29:267–278

  • Rodriguez KM, Weissel JK, Kim Y (2002) Classification of landslide surfaces using fully polarimetric SAR: examples from Taiwan. In: International Geoscience and Remote Sensing Symposium (IGARSS) 5:2918–2920

  • Romana M (1985) New adjustment ratings for application of Bieniawski’s classification to slopes. In: International symposium on the role of rock mechanics, ISRM, Zacatecas, pp 49–53

  • Romana M (1993) A geomechanical classification for slopes: slope mass rating. In: Hudson JA (ed) Comprehensive rock engineering, vol 3, Pergamon, UK, pp 575–600

  • Ronzani G, Strada C, Zamai V (1999) Application of GIS based techniques in the ellaboration of the Romana SMR index (1985) in order to assess the stability of rock walls (Italy). J Tech Environ Geol 3:13–18

    Google Scholar 

  • Rosenbaum MS, Popescu ME (1996) Using a geographical information system to record and assess landslide-related risks in Polonia. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 363–370

  • Rosenbaum MS, Senneset K, Popescu ME (1997) Assessing the likelihood of landslide-related hazards on a regional scale. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Engineering geology and the environment. A.A. Balkema, Rotterdam, pp 1009–1014

  • Rouai M, Jaaidi EB (2003) Scaling properties of landslides in the Rif mountains of Morocco. Eng Geol 68:353–359

    Google Scholar 

  • Ruff M, Schanz C, Czurda K (2002) Geological hazard assessment and rockfall modelling in the Northern Calcareous Alps, Voralberg/Austria. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 461–470

  • Rumelhart H, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation. In: Rumelhart H, McClelland JL (eds) Parallel distributed processing. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Rybar J (1973) Representation of landslides in engineering geology maps. In: Landslide—the slope stability review, Eureka, California, vol 1, no. 1, pp 15–21

  • Saboya F Jr, Pinto WD, Gatts CEN (2004) Fuzzy mapping of great areas susceptible to slope failure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 371–378

    Google Scholar 

  • Sadek S, Kaysi I, Bedran M (2000) Geotechnical and environmental considerations in highways layouts: an integrated GIS assessment approach. JAG 2(3/4):190–198

    Google Scholar 

  • Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Canga) Valley, Himalayas. Int J Remote Sens 23(2):357–369

    Google Scholar 

  • Santacana N (2001) Análisis de la susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de sistemas de información geográfica: aplicación a la cuenca del río Llobregat. PhD Thesis. Department of Ingeniería del Terreno y Cartográfica, UPC, Barcelona, Spain. Unpublished

  • Santacana N, Corominas J (2002) Example of validation of landslide susceptibility maps. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 305–310

  • Santacana N, Baeza C, Corominas J, de Paz A, Marturiá J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):281–295

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Eng Remote Sens 70(5):617–625

    Google Scholar 

  • Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: a case study in Garhwai Himalaya, India. Mt Res Dev 15(4):301–309

    Google Scholar 

  • Sasaki Y, Abe M, Hirano I (1991) Fractal of slope failure size-number distribution. J Japan Soc Eng Geol 32(3):1–11

    Google Scholar 

  • Sassa K, Wang G, Fukuoka H, Wang F, Ochiai T, Sugiyama M, Sekiguchi T (2004) Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides DOI 10.1007/s10346–004–0028-y

  • Saunchyn DJ, Trench NR (1978) Landsat applied to landslide mapping. Photogrammetric Eng Remote Sens 44(6):735–741

    Google Scholar 

  • Savage WZ, Godt JW, Baum RL (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In: Rickenmann D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. MillPress Science, Rotterdam, pp 179–187

    Google Scholar 

  • Savage WZ, Codt W, Baum RL (2004) Modeling timedependent areal slope stability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 23—38

    Google Scholar 

  • Scanvic JY (1994) Remote sensing and GIS: tools for the mapping of areas at risk from landslide. Mappemonde 94(4):44–47

    Google Scholar 

  • Schiavon G, Del Frate F, D’Ottavio D, Stramondo S (2003) Landslide identification by SAR interferometry: the Sarno case. In: International Geoscience and Remote Sensing Symposium (IGARSS) 4:2428–2429

  • Schmid RH, MacCannel J (1955) Basic problems, techniques and theory of isopleth mapping. J Am Stat Assoc 50(269):220–239

    Google Scholar 

  • Schmoll HR (1974) Slope-stability map of Anchorage and vicinity. Alaska US Geol Surv Misc Inv Map I–787–E

  • Schuster RL, Krizek RJ (eds) (1978) Landslides: analysis and control. Transportation Research Board Special Report 176. National Research Council, Washington, DC, 234 pp

  • Schuster RL, Wieczorek GF (2002) Landslides triggers and types. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 59–78

  • Scott GR (1972) Map showing landslides and areas susceptible to landslides in the Morrison Quadrangle, Jefferson County, Colorado. US Geological Survey. Map I-790-B. USA

  • Sfar Felfoul M, Snane MH, Mlaouhi A, Megdiche MF (1999) Importance du facteur lithologique sur le développement des ravins du basin versant dÓued Maiez en Tunisie Centrale. Bull Eng Geol Environ 57:285–293

    Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton

    Google Scholar 

  • Shortliffe EH, Buchanan GG (1975) A model of inexact reasonning in medicine. Math Biosci 23:351–379

    Google Scholar 

  • Siddle RC, Dakhal AS (2003) Recent advances in the spatial and temporal modeling of shallow landslides. In: MODSIM2003: International Congress on Modelling and Simulation. University of Wales, Nedlands, pp 602–607

  • Siddle RC, Wu WM (2001) Evaluation of the temporal and spatial impacts of timber harvesting on landslide occurrence. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds—human influence on hydrology and geomorphology in urban and forest areas. Water Sci Appl 2:179–193

    Google Scholar 

  • Simons DB, Li RM, Ward TJ (1978) Mapping of potential landslide areas in terms of slope stability. Fort Collins, Colorado. Civil Engineering Dept., Colorado State University, 75 pp

  • Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv Space Res 33(3):290–295

    Google Scholar 

  • Singhroy V, Mattar KE, Gray AL (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21(3):465–476

    Google Scholar 

  • Singhroy V, Molch K, Bulmer M (2002) Characterization of landslide deposits using SAR images. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:185–187

  • Skabar A (2003) Predicting the distribution of discrete spatial events using artifical neural networks. In: Gedeon TD, Fung LCC (eds) AI 2003 and LNAI 2903. Springer, Berlin Heidelberg New York, pp 567–577

  • Smith GJ, Rosenbaum MS (1998) Graphical methods for hazard mapping and evaluation. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 215–220

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, Special Report 247, National Academy Press, Washington, pp 129–177

  • Soeters R, Rengers N, van Westen CJ (1991) Remote sensing and geographical information systems as applies to mountain hazard analysis and environmental monitoring. In: 8th thematic conference geology remote sensing (ERIM), Denver, vol 2, pp 1389–1402

  • Somfai E, Czirók A, Viczek T (1994) Power-law distribution of landslides in an experiment of a granular pile. J Phys A: Math Gen 27(I):757–763

    Google Scholar 

  • Sorriso-Valvo M (2002) Landslides: from inventory to risk. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 59–79

  • Spiker EC, Gori PL (2000) National landslide hazards mitigation strategy: a framework for loss reduction. Open-file report 00-450, Department of Interior, U.S.G.S., USA, 49 pp

  • Spiker EC, Gori PL (2003a) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. The National Academy of Sciences Press, Washington, DC

    Google Scholar 

  • Spiker EC, Gori PL (2003b) National landslide hazards mitigation strategy: a framework for loss reduction. USGS Circular 1244. US Department of Interior, U.S.G.S. Reston, Virginia, 56 pp

  • Spizzichino D, Falconi L, Delmonaco G, Margottini C, Puglisi V (2004) Integrated approach for landslide risk assessment of Craco village (Italy). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 237–242

    Google Scholar 

  • Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68(1–2):53–66

    Google Scholar 

  • Sterlacchini S, Masetti M, Poli A (2004) Spatial integration of thematic data for predictive landslide mapping: a case study from Oltrepo Pavese area, Italy. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 109–117

    Google Scholar 

  • Stevenson PC (1977) An empirical method for the evaluation of relative landslide risk. Int Ass Eng Geol Bull 16:69–72

    Google Scholar 

  • Süzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using geographical information system: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71: 303–321

    Google Scholar 

  • Süzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Google Scholar 

  • Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kahan catchment area, southwest Iran. Aust J Earth Sci 51(3):439–450

    Google Scholar 

  • Tarchi D, Leva D, Sieber AJ (2000) SAR interferometric techniques from ground based system for the monitoring of landslides. In: International Geoscience and Remote Sensing Symposium (IGARSS) 6:2756–2758

  • Tarchi D, Casagli N, Moretti S, Leva D, Sieber AJ (2003a) Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: application to the Ruinon landslide in the Italian Alps. J Geophys Res B: Solid Earth 108(8)

  • Tarchi D, Casagli N, Fanti R, Leva DD, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003b) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68(1–2):15–30

    Google Scholar 

  • Temesgen B, Mohammed MU, Korme T (2001) Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia. Phys Chem Earth, Part C: Solar Terrest Planet Sci 26/9:665–675

    Google Scholar 

  • Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides. PhD thesis. ITC Publication 32, Enschede, Netherlands, 254 pp

  • Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology 20:165–175

    Google Scholar 

  • Terlien MTJ, Van Westen CJ, Van Asch TWJ (1995) Deterministic modelling in GIS-based landslide hazards assessment. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 57–77

  • Thein S, Schmanke V, Grunet J (1995) The production of a landslide-susceptibility map at the scale of 1:10.000 for the Katzenlochbach and Melb valley southwest of Bonn using a geo-information-system. Mitteilungen der Osterreichischen Geographischen Gesellschaft 137:93–104

    Google Scholar 

  • Thierry P, Vinet L (2002) Mapping an urban area prone to slope instability: Greater Lyons. Bull Eng Geol Environ 62:135–143

    Google Scholar 

  • Thornes JB, Alcántara-Ayala I (1998) Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls. Geomorphology 24:87–100

    Google Scholar 

  • Tomlinson RF (1984) Geographic information systems—a new frontier. Oper Geogr 5:31–35

    Google Scholar 

  • Trajan Software (2001) Trajan 6.0 Professional—neural network simulator (manual). Protaprint, Durham

  • Trinh PT (2000) Remote sensing and GIS for warning of geological hazards: application in Vietnam. In: Zschau J, Kuppers AN (eds) Early warning systems for natural disaster reduction, proceedings, Potsdam, Germany, pp 753–762

  • Turcotte DL (1999a) Application of statistical mechanism to natural hazards and landforms. Physica A 274:294–299

    Google Scholar 

  • Turcotte DL (1999b) Self-organized criticality. Rep Prog Phys 62:1377–1429

    Google Scholar 

  • Turcotte DL (2001) Self-organized criticality: does it have anything to do with criticality and is it useful? Nonlinear Proc Geophys 8:193–196

    Google Scholar 

  • Turcotte DL, Malamud BD (2004) Landslides, forest fires, and earthquakes: examples of self-organized critical behavior. Physica A 340:580–589

    Google Scholar 

  • Turcotte DL, Malamud BD, Guzzetti F, Reichenbach P (2002) Self-organization, the cascade model, and natural hazards. Coloquium, PNAS 99(1):2530–2537

    Google Scholar 

  • Turner AK (ed) (1992) Three-dimensional modelling with geoscientific information systems. NATO ASI Series, C, vol 354. Kluwer, Dordrecht, 452 pp

  • Turner AK, Schuster RL (eds) (1996) Landslides: investigation and mitigation. Transportation Research Board Special Report 247. National Research Council, Washington, 673 pp

  • Turrini MC, Visintainer P (1998) Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy. Eng Geol 50:255–265

    Google Scholar 

  • Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull Eng Geol Environ 58:207–213

    Google Scholar 

  • Vähäaho I (1998) From geotechnical maps to three-dimensional models. Tunnelling Underground Space Technol 13(1):51–56

    Google Scholar 

  • Valadäo P, Gaspar JL, Queiroz G, Ferreira T (2002) Landslides density map of S. Miguel Island, Azores archipelago. Nat Hazard Earth Syst Sci 2:51–56

    Google Scholar 

  • Vallario A, Coppola L (1973) Geologia e franosita nell’area ad oriente del Taburno-Camposauro e del Partenio (Province di Benevento ed Avellino). Geologia Applicata e Idrogeologia, v. 8, pt. 1, pp 19–87. 1 map 1:50.000

  • Van Beek LPH, Van Asch THWJ (2004) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304

    Google Scholar 

  • Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21:241–255

    Google Scholar 

  • Van Westen CJ (2004) Geoinformation tools for landslide risk assessment: an overview of recent developments. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor& Francis Group, London, pp 39–56

    Google Scholar 

  • Van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54:77–89

    Google Scholar 

  • Van Westen CJ, Van Duren I, Kruse HMG, Tercien MTJ (1993) GISSIZ: training package for geographical information systems in slope instability zonation. ITC Publication, vol 15. International Institute for Aerospace and Earth Resources Survey, ITC, Enschede, 245 pp

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Google Scholar 

  • Van Westen CJ, Seijmonsbergen AC, Mantovani F (1999) Comparing landslide hazard maps. Nat Hazards 20:137–158

    Google Scholar 

  • Van Westen CJ, Soeters R, Sijmons K (2000). Digital geomorphological landslide hazard mapping of the Alpago area, Italy. IAG 2(1):51–60

    Google Scholar 

  • Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):399–419

  • Varnes DJ (1974) The logic of geological maps, with reference to their interpretation and use for engineering purposes. Geological Survey Professional Papers, 837. USGS, Washington, 48 pp

  • Varnes DJ (1978) Slope movement types and processes: In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control. Transportation Research Board Special Report 176. National Academy of Sciences, Washington, DC, pp 11–33

  • Varnes DJ (1984) International Association of Engineering Geology Commission on Landslides and Other Mass Movements on Slopes. Landslide hazard zonation: a review of principles and practice. Int Assoc Eng Geol, UNESCO Natural Hazards Series no. 3, 63 pp

  • Vaunat J, Leroueil S (2002) Analysis of post-failure slope movements within the framework of hazard and risk analysis. Nat Hazards 26:83–109

    Google Scholar 

  • Vecchia O (1978) A simple terrain index for the stability of hillsides or scarps. In: Geddes JD (ed) Large ground movements and structures. Wiley, New York Toronto, pp 449-461

  • Ventakatachalam G, Nagesha MS, Dodagoudar GR (2002) Landslide modelling using remote sensing and GIS. IGARSS: IEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: Integrationg our view of the Planet, Toronto, Canada, pp 2045–2047

  • Vietmeier J, Wagner W, Dikau R (2000) Monitoring moderate slope movements (landslides) in the Southern French Alps using differential SAR interferometry. European Space Agency (special publication) ESA SP 478:559–563

    Google Scholar 

  • Vose D (1996) Quantitative risk analysis: a guide to Monte Carlo simulation modeling. Wiley, Chichester, 328 pp

  • Wachal DJ, Hudak PF (2000) Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal 51:245–253

    Google Scholar 

  • Wang X, Jiang Y, Zhao Y, Pan L (2002) Study and application on the visualization of geological information system in landslideYanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 21(Suppl):2511–2514

    Google Scholar 

  • Wang X, He M, Jiang Y, Cui Z (2003) Stability analysis of landslide based on mechanics principle in GISYanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 22(6):977–980

    Google Scholar 

  • Ward TJ, Li RM, Simons DB (1982) Mapping landslide hazards in forest watersheds. J Geotech Eng Div—ASCE 108(2):319–324

    Google Scholar 

  • Wasowski J, Del Gaudio V, Pierri P, Capolongo D (2002) Factors controlling seismic susceptibility of the Sele valley slopes: the case of the 1980 Irpinia earthqhake re-examined. Surv Geophys 23:563–593

    Google Scholar 

  • Wei P, Da’an L, Zhifa Y, Qianbang Z, Siyuan Y, Huiya Z, Yanhui L (2004) A synthetic geological information system and its application to Xiangjiaba hydropower station. Paper 1B13 SINOROCK2004 symposium. Int J Rock Mech Min Sci 41(3):7

    Google Scholar 

  • Weibull W (1951) A statistical distribution of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Weidinger JT (1998) Case history and hazard analysis of two lake-damming landslides in the Himalayas. J Asian Earth Sci 16(2–3):323–331

    Google Scholar 

  • Wetzel HU, Roessner S, Sarnagoev A (2000) Remote sensing and GIS based geological mapping for assessment of landslide hazard in Southern Kyrgyztan (Central Asia). In: Brebbia CA, Pascolo P (eds) Management information systems 2000—GIS and remote sensing. Management information systems, vol 1. WIT Press, Ashurst, pp 355–366

  • Wieczorek GF (1978) Landslide susceptibility evaluation in the Santa Cruz Range, San Mateo County, California. Berkeley, University of California, PhD Thesis, 278 pp

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21(3):337–342

    Google Scholar 

  • Wilkinson PL, Anderson MG, Lloyd DM, Renaud J-P (2002) Landslide hazard zonation and bioengineering:towards providing improved decision support through integrated model development. Environ Model Softw 17:333–344

    Google Scholar 

  • Williamson JA (1975) Landslide susceptibility near Tomales Bay, California. San Francisco State University, California, Masters thesis, 113 pp

  • Wilson RC, Keefer DK (1985) Predicting aerial limits of earthquake-induced landsliding. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles region—An Earth- Science perspective, USGS Professional paper 1360, pp. 316–345

  • Woodward HB (1897) Soils and subsoils from a sanitary point of view; with especial reference to London and its neighbourhood 1st edn. Memoirs of the Geological Survey England and Wales. Her Majesty´s Stationery Office, London

  • Worboys MF (1995) GIS: a computing perspective. Taylor and Francis, London

    Google Scholar 

  • Worboys MF, Duckham M (2004) GIS: a computing perspective, 2nd edn. CRC Press, UK

    Google Scholar 

  • WP/WLI (1990) A suggested method for reporting a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 41:5–12

  • WP/WLI (1991) A suggested method for a landslide summary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 43:101–10

  • WP/WLI (1993a) A suggested method for describing the activity of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 47:53–57

  • WP/WLI (1993b) Multilingual landslide glossary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). BiTech, Richmond, 59 pp

  • WP/WLI (1994) A suggested method for reporting landslide causes. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Int Assoc Eng Geol 50:71–74

  • WP/WLI (1995) A suggested method for describing the rate of movement of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Int Assoc Eng Geol 52:75–78

  • WP/WLI (2001) A suggested method for reporting landslide remedial measures. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Eng Geol Environ 60:69–74

  • Wrigth RH, Nilsen TH (1974) Isopleth maps of landslide deposits, southern San Francisco Bay Region, California. US Geological Survey Field Studies Map MF-550. USGS, California

  • Wrigth RH, Campbell RH, Nilsen TH (1974). Preparation and use of isopleth maps of landslide deposits. Geology 2:483–485

    Google Scholar 

  • Wu Q, Ye S, Wu X, Chen P (2004) Risk assessment of earth fractures by constructing an intrinsic vulnerability map, a specific vulnerability map, and a hazard map, using Yuci City, Shanxi, China as an example. Environ Geol 46:104–112

    Google Scholar 

  • Xie QM, Xia YY (2004) Systems theory for risk evaluation of landslide hazard. Int J Rock Mech Min Sci, vol 41, no. 3, CD-ROM, Elsevier, Netherlands

  • Xie MW, Esaki T, Zhou GY, Mitani Y (2001) Effective data management for GIS-based critical slip searching. In: Ho KKS, Li KS (eds) Geotechnical engineering meeting society’s needs. A.A. Balkema, Rotterdam, pp 947–952

  • Xie MW, Esaki T, Zhou GY, Mitani Y (2003) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. J Geotech Geoenviron Eng 129(12):1109–1118

    Google Scholar 

  • Xie M, Esaki T, Zhou G, Mitani Y (2003a) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. J Geotech Geoenviron Eng 129(12):1109–1118

    Google Scholar 

  • Xie M-W, Zhou G-Y, Esaki T (2003c) GIS component based 3D landslide hazard assessment system: 3DSlopeGIS. Chin Geogr Sci 13(1):66–72

    Google Scholar 

  • Xie M, Tetsuro E, Zhou G (2003b) GIS method for slope-unit-based 3D landslide hazard evaluation.Yanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 22(6):969–976

    Google Scholar 

  • Xie M, Esaki T, Cai M (2004a) A GIS-based method for locating the critical 3D slip surface in a slope. Comput Geotech 31:267–277

    Google Scholar 

  • Xie M, Esaki T, Cai M (2004b) A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environ Geol 46:840–850

    Google Scholar 

  • Xie M, Esaki T, Zhou G (2004c) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Nat Hazards 33:265–282

    Google Scholar 

  • Xie M, Esaki T, Mitani Y, Cai M (2004d) A 3D deterministic approach for mapping landslide hazards using GIS. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 97–102

    Google Scholar 

  • Ye X, Kaufmann H, Guo XF (2004) Landslide monitoring in the three Gorges area using D-INSAR and corner reflectors. Photogrammetric Eng Remote Sens 70(10):1167–1172

    Google Scholar 

  • Yi S, Sun Y (1997) Fractal characterization of regional landslide activities and its significance. Engineering Geology and the Environment, Proceedings symposium, Athens, 1:1155–1158

    Google Scholar 

  • Yokoy Y, Carr JR, Watters RJ (1995) Fractal character of landslides. Environ Eng Geosci 1(1):75–81

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Google Scholar 

  • Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28

    Google Scholar 

  • Záruba Q, Mencl V (1961) Ingenieurgeologie. Berlin, Prague, 267 pp

  • Záruba Q, Mencl V (1969) Landslides and their control. Elsevier, Amsterdam, 205 pp

  • Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observation. J Geophys Res 91:4993–4999

    Article  Google Scholar 

  • Zell A (1994) Simulation neuronaler Netze. Addison-Wesley, Bonn

    Google Scholar 

  • Zerger A (2002) Examining GIS decision utility for natural hazard risk modelling. Environ Modell Softw 17:287–294

    Google Scholar 

  • Zêzere JL, Reis E, García R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004a) Integration of spatial temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4(1):133–146

    Article  Google Scholar 

  • Zêzere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004b) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 117–124

    Google Scholar 

  • Zhang LQ, Yang ZF, Liao QL, Chen J (2004) An application of the rock engineering system (RES) methodology in rockfall hazard assessment on the Chengdu-Lhasa highway, China. SINOROCK 2004 Symposium. Int J Rock Mech Min Sci 41(3):1–6. CD-ROM. Elsevier

    Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68(3–4):373–386

    Google Scholar 

  • Zhou G, Song C, Simmer J, Cheng P (2004) Urban 3D GIS from LIDDAR and digital aerial images. Comput Geosci 30:345–353

    Google Scholar 

  • Zimmermann HJ (1996) Fuzzy set theory and its applications, 3rd edn. Kluwer, Dordrecht

    Google Scholar 

  • Zinck JA, López J, Metternicht GI, Shresta D, Vázquez-Selem L (2001) Mapping and modelling mass movements and gullies in mountain areas using remote sensing and GIS techniques. JAG 3(1):43–53

    Google Scholar 

Download references

Acknowledgments

This review has been funded by project REN2002-03366 on Landslides and active tectonics in the Guadalfeo river basin (Granada, Spain), CICYT- I+D, Spanish Ministery of Education and Science and by the Research Group on Environment: Natural Hazards and Terrain Engineering (RNM 121) Andalusian Plan of Research, Seville (Spain). The encouraging support of B. Marker, who kindly reviewed the final English version, M. Culshaw, Earl E. Brabb and F. Olóriz is acknowledged. P. Reichenbach is thanked for kind permission to use Figs. 14, 16 and 17 and the papers, maps, comments and information received from C. Bonnard, N.C. Evans, B. Marker, J. Marquínez, P. Gori and G. Tosatti, are acknowledged, as well as a preliminary English reviewing by R. Jiménez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chacón.

Additional information

This report is being continually updated and further references can be seen on the IAEG website (www.iaeg.info) under Commission No. 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacón, J., Irigaray, C., Fernández, T. et al. Engineering geology maps: landslides and geographical information systems. Bull Eng Geol Environ 65, 341–411 (2006). https://doi.org/10.1007/s10064-006-0064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-006-0064-z

Keywords

Mots clés

Navigation