Skip to main content
Log in

Mechanical properties of inclined frictional granular layers

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate the mechanical properties of inclined frictional granular layers prepared with different protocols by means of DEM numerical simulations. We perform an orthotropic elastic analysis of the stress response to a localized overload at the layer surface for several substrate tilt angles. The distance to the unjamming transition is controlled by the tilt angle \(\alpha \) with respect to the critical angle \(\alpha _c\). We find that the shear modulus of the system decreases with \(\alpha \), but tends to a finite value as \(\alpha \rightarrow \alpha _c\). We also study the behaviour of various microscopic quantities with \(\alpha \), and show in particular the evolution of the contact orientation with respect to the orthotropic axes and that of the distribution of the friction mobilisation at contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. I. Assembling processes, geometry and contact networks. Phys. Rev. E 76, 061302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  2. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. II. Compression and pressure cycles. Phys. Rev. E 76, 061303 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Agnolin, I., Roux, J.-N.: Internal states of model isotropic granular packings. III. Elastic properties. Phys. Rev. E 76, 061304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Claudin, P., Behringer, R.P., Clément, E.: From the stress response function (back) to the sandpile ‘dip’. Eur. Phys. J. E 17, 93 (2005)

    Article  Google Scholar 

  5. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Combe, G., Claudin, P., Behringer, R.P., Clément, E.: Sensitivity of the stress response function to packing preparation. J. Phys. Condens. Matter 17, S2391 (2005)

    Article  ADS  Google Scholar 

  6. Atman, A.P.F., Claudin, P., Combe, G., Goldenberg, C., Goldhirsch, I.: Transitions in the response of a granular layer. In: Nakagawa, M., Luding, S. (eds.) Proceedings of the 6th International Conference on Micromechanics of Granular Media, Powders and Grains 2009, p. 492. American Institute of Physics (2009)

  7. Atman, A.P.F., Claudin, P., Combe, G.: Departure from elasticity in granular layers: investigation of a crossover overload force. Comput. Phys. Commun. 180, 612 (2009)

    Article  ADS  Google Scholar 

  8. Atman, A.P.F., Claudin, P., Combe, G., Mari, R.: Mechanical response of an inclined frictional granular layer approaching unjamming. Europhys. Lett. 101, 44006 (2013)

    Article  ADS  Google Scholar 

  9. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  10. Bonneau, L., Andreotti, B., Clément, E.: Evidence of Rayleigh–Hertz surface waves and shear stiffness anomaly in granular media. Phys. Rev. Lett. 101, 118001 (2008)

    Article  ADS  Google Scholar 

  11. Brito, C., Dauchot, O., Biroli, G., Bouchaud, J.-P.: Elementary excitation modes in a granular glass above jamming. Soft Matter 6, 3013 (2010)

    Article  ADS  Google Scholar 

  12. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

    Article  ADS  Google Scholar 

  13. Radjaï, F., Dubois, F. (eds.): Discrete-Element Modeling of Granular Materials. ISTE, Wiley (2011)

  14. Ellenbroek, W.G., van Hecke, M., van Saarloos, W.: Jammed frictionless disks: connecting local and global response. Phys. Rev. E 80, 061307 (2009)

    Article  ADS  Google Scholar 

  15. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78, 021301 (2008)

    Article  ADS  Google Scholar 

  16. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87, 035506 (2001)

    Article  ADS  Google Scholar 

  17. Gland, N., Wang, P., Makse, H.A.: Numerical study of the stress response of two-dimensional dense granular packings. Eur. Phys. J. E 20, 179 (2006)

    Article  Google Scholar 

  18. Goldenberg, C., Atman, A.P.F., Claudin, P., Combe, G., Goldhirsch, I.: Scale separation in granular packings: stress plateaus and fluctuations. Phys. Rev. Lett. 96, 168001 (2006)

    Article  ADS  Google Scholar 

  19. Goldhirsch, I., Goldenberg, C.: On the microscopic foundations of elasticity. Eur. Phys. J. E 9, 245 (2002)

    Article  Google Scholar 

  20. Goldhirsch, I., Goldenberg, C.: Friction enhances elasticity in granular solids. Nature 435, 188 (2005)

    Article  ADS  Google Scholar 

  21. Henkes, S., Brito, C., Dauchot, O., van Saarloos, W.: Local coulomb versus global failure criterion for granular packings. Soft Matter 6, 2939 (2010)

    Article  ADS  Google Scholar 

  22. Henkes, S., Shundyak, K., van Saarloos, W., van Hecke, M.: Local contact numbers in two-dimensional packings of frictional disks. Soft Matter 6, 2935 (2010)

    Article  ADS  Google Scholar 

  23. Henkes, S., van Hecke, M., van Saarloos, W.: Critical jamming of frictional grains in the generalized isostaticity picture. Europhys. Lett. 90, 14003 (2010)

    Article  ADS  Google Scholar 

  24. Heussinger, C., Barrat, J.-L.: Jamming transition as probed by quasistatic shear flow. Phys. Rev. Lett. 102, 218303 (2009)

    Article  ADS  Google Scholar 

  25. Kruyt, N.P.: Micromechanical study of plasticity of granular materials. C. R. Mec. 338, 596 (2010)

    Article  ADS  MATH  Google Scholar 

  26. Leonforte, F., Tanguy, A., Wittmer, J.P., Barrat, J.-L.: Continuum limit of amorphous elastic bodies II: linear response to a point source force. Phys. Rev. B 70, 014203 (2004)

    Article  ADS  Google Scholar 

  27. Liu, A.J., Nagel, S.R.: Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  28. Liu, A.J., Nagel, S.R.: Granular and jammed materials. Soft Matter 6, 2869 (2010)

    Article  ADS  Google Scholar 

  29. Liu, A.J., Nagel, S.R., van Saarloos, W., Wyart, M.: The jamming scenario—an introduction and outlook. In: Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L., van Saarloos, W. (eds.) Dynamical Heterogeneities in Glasses, Colloids, and Granular Media, p. 298. Oxford University Press, Oxford (2011)

    Chapter  Google Scholar 

  30. Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)

    Google Scholar 

  31. Moukarzel, C.F.: Isostaticity in granular matter. Granul. Matter 3, 41 (2001)

    Article  Google Scholar 

  32. O’Hern, C.S., Langer, S.A., Liu, A.J., Nagel, S.R.: Random packings of frictionless particles. Phys. Rev. Lett. 88, 075507 (2002)

    Article  ADS  Google Scholar 

  33. O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  34. Otsuki, M., Hayakawa, H.: Critical scaling near jamming transition for frictional granular particles. Phys. Rev. E 83, 051301 (2011)

    Article  ADS  Google Scholar 

  35. Otto, M., Bouchaud, J.-P., Claudin, P., Socolar, J.E.S.: Anisotropy in granular media: classical elasticity and directed force chain network. Phys. Rev. E 67, 031302 (2003)

    Article  ADS  Google Scholar 

  36. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  37. Roux, J.-N.: Geometric origin of mechanical properties of granular materials. Phys. Rev. E 61, 6802 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  38. Serero, D., Reydellet, G., Claudin, P., Clément, E., Levine, D.: Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity. Eur. Phys. J. E 6, 169 (2001)

    Article  Google Scholar 

  39. Silbert, L.E.: Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918 (2010)

    Google Scholar 

  40. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D.: Geometry of frictionless and frictional sphere packings. Phys. Rev. E 65, 031304 (2002)

    Google Scholar 

  41. Shundyak, K., van Hecke, M., van Saarloos, W.: Force mobilization and generalized isostaticity in jammed packings of frictional grains. Phys. Rev. E 75, 010301 (2007)

    Article  ADS  Google Scholar 

  42. Somfai, E., van Hecke, M., Ellenbroek, W.G., Shundyak, K., van Saarloos, W.: Critical and noncritical jamming of frictional grains. Phys. Rev. E 75, 020301 (2007)

    Article  ADS  Google Scholar 

  43. Staron, L., Vilotte, J.-P., Radjaï, F.: Preavalanche instabilities in a granular pile. Phys. Rev. Lett. 89, 204302 (2002)

    Article  ADS  Google Scholar 

  44. Tkachenko, A.V., Witten, T.A.: Stress propagation through frictionless granular material. Phys. Rev. E 60, 687 (1999)

    Article  ADS  Google Scholar 

  45. van Hecke, M.: Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys. Condens. Mat. 22, 033101 (2010)

    Article  ADS  Google Scholar 

  46. Wyart, M., Nagel, S.R., Witten, T.A.: Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids. Europhys. Lett. 72, 486 (2005)

    Article  ADS  Google Scholar 

  47. Zhang, H.P., Makse, H.A.: Jamming transition in emulsions and granular materials. Phys. Rev. E 72, 011301 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank I. Cota Carvalho, R. Mari and M. Wyart for fruitful discussions. This work is part of the ANR JamVibe, project # 0430 01. A.P.F. Atman has been partially supported by the exchange program ‘Science in Paris 2010’ (Mairie de Paris) and by a visiting professorship ‘ESPCI-Total’. A.P.F. Atman thanks CNPq and FAPEMIG Brazilian agencies for financial funding, and PMMH/ESPCI for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Claudin.

Appendix: Orthotropic elastic response

Appendix: Orthotropic elastic response

In this Appendix, we detail elastic calculations on a 2D orthotropic slab of finite thickness \(h\). Following the notations of Fig. 1, we note \((1,2)\) the orthotropic directions, while \((n,t)\) are the directions respectively normal and tangential to the slab. We note \(\tau \) the angle between axes \((1,2)\) and \((n,t)\). For the sake of the computation of the stress profiles in response to a force \(\varvec{F}_0\) applied at the free surface, one can switch off gravity, and the mechanical equilibrium of the system writes

$$\begin{aligned} \partial _n \sigma _{nn} + \partial _t \sigma _{tn} = 0 \qquad \text{ and } \qquad \partial _n \sigma _{tn} + \partial _t \sigma _{tt} = 0, \end{aligned}$$
(2)

where \(\sigma _{ij}\) is the stress tensor. We define the strain tensor \(u_{ij}\) from the displacement field \(u_i\) as \(u_{ij} = \frac{1}{2} (\partial _i u_j + \partial _j u_i)\). It verifies the compatibility condition:

$$\begin{aligned} \partial _n^2 u_{nn} + \partial _t^2 u_{tt} - 2 \partial _n \partial _t u_{tn} = 0. \end{aligned}$$
(3)

Introducing the two Young moduli \(E_1\) and \(E_2<E_1\), the shear modulus \(G\) and two Poisson coefficients \(\nu _{12}\) and \(\nu _{21}\), the generalised Hooke’s law relating strain and stress tensors writes, in the orthotropic axes, as follows:

$$\begin{aligned} \left( \begin{array}{c} u_{11}\\ u_{22}\\ u_{12} \end{array}\right) =\left( \begin{array}{c@{\quad }c@{\quad }c} \frac{1}{E_1} &{} -\frac{\nu _{21}}{E_2} &{} 0\\ -\frac{\nu _{12}}{E_1} &{} \frac{1}{E_2} &{} 0\\ 0 &{} 0 &{} \frac{1}{2G} \end{array} \right) \left( \begin{array}{c} \sigma _{11}\\ \sigma _{22}\\ \sigma _{12} \end{array} \right) . \end{aligned}$$
(4)

We call \(\mathcal {W}_\dagger \) this \(3 \times 3\) compliance matrix. It must be symmetric and these coefficients thus verify \(\nu _{12}/E_1 = \nu _{21}/E_2\). Elastic energy is well defined if all moduli \(E_1,E_2,G\) are positive and \(1-\nu _{12}\nu _{21}>0\). In \((n,t)\) axes, we have

$$\begin{aligned} \left( \begin{array}{c} u_{nn}\\ u_{tt}\\ u_{tn} \end{array} \right) = \mathcal {W}_\tau \left( \begin{array}{c} \sigma _{nn}\\ \sigma _{tt}\\ \sigma _{tn} \end{array} \right) \quad \text{ with } \quad \mathcal {W}_\tau = \mathcal {Q}^{-1} \mathcal {W}_\dagger \mathcal {Q} \end{aligned}$$
(5)

and the rotation matrix

$$\begin{aligned} \mathcal {Q} = \left( \begin{array}{ccc} \cos ^2\tau &{} \sin ^2\tau &{} 2\cos \tau \sin \tau \\ \sin ^2\tau &{} \cos ^2\tau &{} -2\cos \tau \sin \tau \\ -\cos \tau \sin \tau &{} \cos \tau \sin \tau &{} \cos ^2\tau -\sin ^2\tau \end{array} \right) . \end{aligned}$$
(6)

The matrix \(\mathcal {W}_\tau \) can be made explicit as follows:

$$\begin{aligned} \mathcal {W}_\tau = \frac{1}{E_2} \left( \begin{array}{c@{\quad }c@{\quad }c} A &{} -C &{} 2D\\ -C &{} B &{} 2F\\ D &{} F &{} H \end{array} \right) , \end{aligned}$$
(7)

with

$$\begin{aligned} A&= T \cos ^4\tau + \sin ^4\tau + 2R\cos ^2\tau \sin ^2\tau , \end{aligned}$$
(8)
$$\begin{aligned} B&= \cos ^4\tau + T \sin ^4\tau + 2R\cos ^2\tau \sin ^2\tau , \end{aligned}$$
(9)
$$\begin{aligned} C&= \nu _{21} + \cos ^2\tau \sin ^2\tau (2R-1-T), \end{aligned}$$
(10)
$$\begin{aligned} D&= \cos \tau \sin \tau \left[ (\sin ^2\tau - \cos ^2\tau )R + \cos ^2\tau (1+T) - 1 \right] ,\nonumber \\ \end{aligned}$$
(11)
$$\begin{aligned} F&= \cos \tau \sin \tau \left[ (\cos ^2\tau - \sin ^2\tau )R + \sin ^2\tau (1+T) - 1 \right] ,\nonumber \\ \end{aligned}$$
(12)
$$\begin{aligned} H&= \nu _{21} - 2\cos ^2\tau \sin ^2\tau (2R-1-T) + R, \end{aligned}$$
(13)

and where we have introduced the two dimensionless numbers

$$\begin{aligned} T \!=\! \frac{E_2}{E_1} \!=\! \frac{\nu _{21}}{\nu _{12}}, \quad \text{ and } \quad R = \frac{1}{2} \, E_2 \left( \frac{1}{G} - \frac{\nu _{12}}{E_1} - \frac{\nu _{21}}{E_2} \right) . \qquad \end{aligned}$$
(14)

With the four roots \(X_k\) (\(k=1, ..., 4\)) of the biquadratic equation \(X^4+2RX^2+T=0\), that is

$$\begin{aligned} X = \pm \sqrt{-R \pm (R^2-T)^{1/2}}, \end{aligned}$$
(15)

the general solution of the problem can be written as sums of Fourier modes:

$$\begin{aligned} \sigma _{nn} (n,t)&= \sum _{k=1}^4 \,\,\int \limits _{-\infty }^{+\infty } \!\!\!\! b_k(q) \, e^{iqt+iY_k qn} dq, \end{aligned}$$
(16)
$$\begin{aligned} \sigma _{tt} (n,t)&= \sum _{k=1}^4 \,\,\int \limits _{-\infty }^{+\infty } \!\!\!\! b_k(q) \, Y_k^2 \, e^{iqt+iY_k qn} dq, \end{aligned}$$
(17)
$$\begin{aligned} \sigma _{tn} (n,t)&= - \sum _{k=1}^4 \,\,\int \limits _{-\infty }^{+\infty } \!\!\!\! b_k(q) \, Y_k \, e^{iqt+iY_k qn} dq, \end{aligned}$$
(18)

where \(Y_k=(X_k-\tan \tau )/(1+X_k\tan \tau )\). The four functions \(b_k\) are determined by the boundary conditions at the top and the bottom of the slab.

At the free surface (\(n=0\)), the overload force imposes two components of the stress:

$$\begin{aligned} \sigma _{nn} = F_0 \cos \theta \, \varDelta (t) \quad \text{ and } \quad \sigma _{tn} = F_0 \sin \theta \, \varDelta (t), \end{aligned}$$
(19)

where \(\theta \) is the angle between \(\varvec{F}_0\) and the direction of the \(n\) axis (see Fig. 1), and where \(\varDelta (t)\) is a normalised function which tells how this force is distributed along the surface—e.g. a Dirac or a Gaussian of width \(w_F\). We need here its Fourier transform \(s(q)\). For the Gaussian case, \(s(q) = \frac{1}{2\pi } \exp (-\frac{1}{2} w_F^2 q^2)\). We typically take \(w_F \rightarrow 0\) (a \(\delta \)-peak). These top conditions (19) then give

$$\begin{aligned} \sum _{k=1}^4 b_k = F_0 \cos \theta \, s(q) \quad \text{ and } \quad \sum _{k=1}^4 b_k Y_k = - F_0 \sin \theta \, s(q).\nonumber \\ \end{aligned}$$
(20)

At the bottom of the slab (\(n=h\)), we impose rigid and rough conditions, i.e. vanishing displacements in both \(t\) and \(n\) directions: \(u_t=u_n=0\). In order to get equations on the functions \(b_k\), we must transform these conditions into equations on the stress components. Taking its derivative along \(t\), the condition \(u_t=0\) gives \(u_{tt}=0\), i.e.

$$\begin{aligned} -C \sigma _{nn} + B \sigma _{tt} + 2F \sigma _{tn} = 0, \end{aligned}$$
(21)

leading to

$$\begin{aligned} \sum _{k=1}^4 b_k \left[ -C - 2F Y_k + B Y_k^2 \right] e^{iY_k q h}= 0. \end{aligned}$$
(22)

Similarly, the condition \(u_n=0\) gives, after a double derivative along \(t\), the relation \(2 \partial _t u_{tn} = \partial _n u_{tt}\), leading to

$$\begin{aligned} \sum _{k=1}^4 b_k \left[ 2D + (C-2H) Y_k + 4F Y_k^2 - B Y_k^3 \right] e^{iY_k q h}= 0.\nonumber \\ \end{aligned}$$
(23)

The four linear Eqs. (20, 22, 23) can be inverted, leading to large but analytic expressions for the functions \(b_k\). Integrations over \(q\) involved in Eqs. 1618 must, however, be computed numerically. Finally, the stress components, made dimensionless by \(F_0/h\), can be plotted for given values of the five parameters \(\tau \), \(T\), \(R\), \(\nu _{21}\) and \(\theta \), as functions of \(t/h\) at a given depth (e.g. \(n=h\)). We checked that the results are insensitive to the value of \(w_F/h\), as long as it remains small.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atman, A.P.F., Claudin, P., Combe, G. et al. Mechanical properties of inclined frictional granular layers. Granular Matter 16, 193–201 (2014). https://doi.org/10.1007/s10035-014-0482-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-014-0482-8

Keywords

Navigation