Skip to main content

Advertisement

Log in

Are Mosses Required to Accurately Predict Upland Black Spruce Forest Soil Carbon in National-Scale Forest C Accounting Models?

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The boreal forest plays a key role in the global carbon (C) cycle, and black spruce (Picea mariana (Mill.) BSP) forests are the dominant coniferous forest type in the Canadian boreal forest. National-scale forest C models currently do not account for the contribution of moss-derived organic matter that we hypothesize to be significant in the C budget of black spruce ecosystems. One such model, the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), is designed to meet Canada’s forest-related greenhouse gas reporting requirements. In this study our goal was to determine if black spruce forest soil C stocks are significantly underestimated by the CBM-CFS3, and if so, to determine if estimates could be improved by adding moss-derived C. We conclude that in black spruce sites, organic layer C is significantly underestimated by CBM-CFS3 compared to sites with all other leading tree species analyzed. We compiled and used published moss net primary productivity rates for upland forest systems, with decomposition rates, in mass-balance calculations to estimate mean moss-derived C in black spruce forests for feather mosses at 64 Mg C ha−1, and for sphagnum mosses at 103 Mg C ha−1. These C pools are similar to the CBM-CFS3 mean underestimation of black spruce soil organic layers (63 Mg C ha−1). We conclude that the contribution of mosses is sufficiently large that a moss C pool should be added to national-scale models including the CBM-CFS3, to reduce uncertainties in boreal forest C budget estimation. Feather and sphagnum mosses should be parameterized separately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Asada T, Warner BG, Banner A. 2003. Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia, Canada. Bryologist 106:516–27.

    Article  Google Scholar 

  • Bauer IE, Bhatti JS, Cash KJ, Tarnocai C, Robinson SD. 2006. Developing statistical models to estimate the carbon density of organic soils. Can J Soil Sci 86(2):295–304.

    Article  CAS  Google Scholar 

  • Bauer IE, Bhatti JS, Swanston C, Weider RK, Preston CM. 2009. Organic matter accumulation and community change at the peatland–upland interface: inferences from 14C and 210 Pb dated profiles. Ecosystems 12:636–53. doi:1.1007/s10021-009-9248-2.

    Article  Google Scholar 

  • Benscoter BW, Vitt DH. 2007. Evaluating feathermoss growth: a challenge to traditional methods and implications for the boreal carbon budget. J Ecol 95:151–8.

    Article  CAS  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV. 2001. Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–70.

    Article  Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST. 2004. Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Glob Chang Biol 10:473–87. doi:10.1111/j.1529-8817.2003.0742.x.

    Article  Google Scholar 

  • Busby JR, Whitfeild DWA. 1978. Water potential, water content, and net assimilation of some boreal forest mosses. Can J Bot 56:1551–8.

    Article  Google Scholar 

  • Camill P, Lynch JA, Clark JS, Adams JB, Jordan B. 2001. Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4:461–78. doi:10.1007/s10021-001-0022-3.

    Google Scholar 

  • Clymo RS. 1984. The limits to peat bog growth. Philos Trans R Soc Lond B 303:605–54.

    Article  Google Scholar 

  • CNVC: Canadian National Vegetation Classification. 2012. Sault Ste. Marie, ON, Canada. Cited (April 24, 2012). http://cnvc-cnvc.ca.

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Megan Steinweg J, Wallenstein MD, Martin Wetterstedt JÅ, Bradford MA. 2011. Temperature and soil organic matter decomposition rates: synthesis of current knowledge and a way forward. Glob Chang Biol 17:3392–404. doi:10.1111/j.1365-2486.2011.02496.x.

    Article  Google Scholar 

  • DeLuca TH, Boisvenue C. 2012. Boreal forest soil carbon: distribution, function and modelling. Forestry 85(2):161–84. doi:10.1093/forestry/cps003.

    Article  Google Scholar 

  • ESWG: Ecological Stratification Working Group. 1996. A national ecological framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Environment Canada, Ecozone Analysis Branch, Ottawa, Ontario, Canada.

  • ELCG: Ecological Land Classification Group. 2005. Ontario Terrestrial Assessment Program, Ontario Ministry of Natural Resources. Marie, ON: Sault Ste.

    Google Scholar 

  • Fenton N, Lecomte N, Légaré S, Bergeron Y. 2005. Paludification in black spruce (Picea mariana) forests of eastern Canada: potential factors and management implications. For Ecol Manage 213:151–9.

    Article  Google Scholar 

  • Fenton NJ, Bergeron Y. 2006. Facilitative succession in a boreal bryophyte community driven by changes in available moisture and light. J Veg Sci 17(1):65–76. doi:10.1111/j.1654-1103.2006.tb02424.x.

    Article  Google Scholar 

  • Fenton N, Simard M, Bergeron Y. 2009. Emulating natural disturbances: the role of silviculture in creating even-aged and complex structures in the black spruce boreal forest of eastern North America. J For Res 14(5):258–67. doi:10.1007/s10310-009-0134-8.

    Article  Google Scholar 

  • Fenton NJ, Bergeron Y, Paré D. 2010. Decomposition rates of bryophytes in managed boreal forests: influence of bryophyte species and forest harvesting. Plant Soil 336:499–508. doi:10.1007/s11104-010-0506-z.

    Article  CAS  Google Scholar 

  • Frolking S, Goulden ML, Wofsy SC, Fan SM, Sutton DJ, Munger JW, Bassas AM, Daube BC, Crill PM, Aber JD, Band LE, Wang X, Savage K, Moore T, Harriss RC. 1996. Modelling temporal variability in the carbon balance of a spruce/moss boreal forest. Glob Chang Biol 2:343–66.

    Article  Google Scholar 

  • Frolking S, Roulet NT, Moore TR, Richard PJH, Lavoie M, Muller SD. 2001. Modelling northern peatland decomposition and peat accumulation. Ecosystems 4(5):479–98.

    Article  Google Scholar 

  • Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH. 2010. A new model of Holocene peatland net primary production, decomposition, water balance and peat accumulation. Earth Syst Dyn Discuss 1:115–67. doi:10.5194/esdd-1-115-2010.

    Article  Google Scholar 

  • Gower ST, Vogel JG, Vogel JM, Kucharik CJ, Steele SJ, Stow TK. 1997. Carbon distribution and above-ground net primary production of upland and lowland boreal forests in Saskatchewan and Manitoba. J Geophys Res 102(D24):29029–41.

    Article  CAS  Google Scholar 

  • Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wang C. 2001. Net primary production and carbon allocation patterns of boreal forest ecosystems. Ecol Appl 11(5):1395–411.

    Article  Google Scholar 

  • Hagemann U, Moroni M, Gliβner J, Makeschine F. 2010. Accumulation and preservation of dead wood upon burial by bryophytes. Ecosystems 13(4):600–11.

    Article  CAS  Google Scholar 

  • Harden JW, O’Neill KP, Trumbore SE, Veldhuis H, Stocks BJ. 1997. Moss and soil contributions to the annual net carbon flux of a maturing boreal forest. J Geophys Res 102:28805–16.

    Article  CAS  Google Scholar 

  • Hermle S, Lavigne MB, Bernier PY, Bergeron O, Paré D. 2012. Component respiration, ecosystem respiration and net primary production of a mature black spruce forest in northern Quebec. Tree Physiol 30:527–40.

    Article  Google Scholar 

  • Hilbert DW, Roulet N, Moore T. 2000. Modelling and analysis of peatlands as dynamical systems. J Ecol 88:230–42.

    Article  Google Scholar 

  • Hobbie S, Schimel J, Trumbore S, Randerson JR. 2000. Controls over carbon storage and turnover in high-latitude soils. Glob Chang Biol 6(1):196–210. doi:10.1046/j.1365-2486.2000.06021.x.

    Article  Google Scholar 

  • Kang S, Kimball JS, Running SW. 2006. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration. Sci Total Environ 362(1–3):85–102.

    Article  PubMed  CAS  Google Scholar 

  • Kimball JS, Zhao M, McDonald KC, Running SW. 2006. Satellite remote sensing of terrestrial net primary production for the pan-arctic basin and Alaska. Mitig Adapt Strat Glob Chang 11(4):783–804. doi:10.1007/s11027-005-9014-5.

    Article  Google Scholar 

  • Klassen RW. 1983. Lake Agassiz and the late glacial history of Northern Manitoba. In Glacial lake Agassiz. In: Teller JT, Clayton L, Eds. Geological association of Canada. Special paper no. 26. p. 97–115.

  • Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P. 2006. Forest floor vegetation plays an important role in photosynthetic production of boreal forests. For Ecol Manage 221:241–8.

    Article  Google Scholar 

  • Kozak A, Kozak RA, Staudhammer CL, Watts SB. 2008. Introductory probability and statistics. Cambridge, UK: CAB International, Cambridge University Press.

    Google Scholar 

  • Kull SJ, Rampley GJ, Morken S, Metsaranta J, Neilson ET, Kurz WA. 2011. Operational-scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) version 1.2: user’s guide. Natural Resources Canada, Canadian Forest Service, Northern Forestry Center, Edmonton, AB.

  • Kurz WA, Apps MJ. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 9(2):526–47.

    Article  Google Scholar 

  • Kurz WA, Apps MJ. 2006. Developing Canada’s national forest carbon monitoring, accounting and reporting system to meet the reporting requirements of the Kyoto protocol. Mitig Adapt Strat Glob Chang 11:33–43. doi:10.1007/s11027-006-1006-6.

    Article  Google Scholar 

  • Kurz WA, Dymond CC, White TM, Stinson G, Shaw CH, Rampley GJ, Smyth C, Simpson BN, Neilson ET, Trohymow JA, Metsaranta J, Apps MJ. 2009. CBM-CFS3: a model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol Model 220:480–504.

    Article  Google Scholar 

  • Lavoie M, Paré D, Fenton N. 2005a. Paludification and management of forested peatlands in Canada: a literature review. Environ Rev 13:21–50. doi:10.1139/a05-006.

    Article  Google Scholar 

  • Lavoie M, Paré D, and Bergeron Y. 2005b. Impact of global change and forest management on carbon sequestration in northern forested peatlands. Environ Rev 13:199–240. doi:10.1139/a05-014.

  • Mack MC, Treseder KK, Manies KL, Harden JW, Schuur EAG, Vogel JG, Randerson JT, Cahpin FS III. 2008. Recovery of abovegraound plant biomass and productivity after fire in mesic and dry black srpcue forests of interior Alaska. Ecosystems 11(2):209–25. doi:10.1007/s10021-007-9117-9.

    Google Scholar 

  • McKenney DW, Hutchinson MF, Kesteven JL, Venier LA. 2001. Canada’s plant hardiness zones revisited using modern climate interpolation techniques. Can J Plant Sci 81:129–43.

    Article  Google Scholar 

  • Moore T, Basiliko N. 2006. Decomposition in boreal peatlands. In: Wieder, RK, Vitt, DH, Eds. Boreal peatland ecosystems, ecological studies 188. Berlin: Springer. p. 125–43.

  • Nakane K, Kohno T, Horikoshi T, Nakatsubo T. 1997. Soil carbon cycling at black spruce (Picea mariana) forest stands in Saskatchewan, Canada. J Geophys Res 102(D24):28785–93.

    Article  CAS  Google Scholar 

  • NFI: National Forest Inventory. 2011. Canada’s National Forest Inventory national standard for ground plots, data dictionary February 2011, version 5.1.1. Canadian Council of Forest Ministers, Ottawa, ON. https://nfi.nfis.org/documentation/ground_plot/Gp_data_dictionary_v5.1.1.pdf (cited March 27, 2012).

  • NFI: National Forest Inventory. 2012. Canada’s national forest inventory, national standards for ground plots compilation procedures version 1.7.2 [draft]. Canadian Council of Forest Ministers, Ottawa, ON.

  • O’Connell KEB, Gower ST, Norman JM. 2003a. Comparison of net primary production and light-use dynamics of two boreal black spruce forest communities. Ecosystems 6(3):236–47.

    Article  Google Scholar 

  • O’Connell KEB, Gower ST, Norman JM. 2003b. Net ecosystem production of two contrasting boreal black spruce forest communities. Ecosystems 6:248–60.

    Article  Google Scholar 

  • Odeh IOA, Chittleborough DJ, McBratney AB. 1991. Elucidation of soil–landform interrelationships by canonical ordination analysis. Geoderma 49:1–32. doi:10.1016/0016-7061(91)90089-C.

    Article  Google Scholar 

  • O’Donnell JAO, Harden JW, McGuire AD, Kanevskiy MZ, Jorgenson MT, Xu X. 2011. The effect of fire and permatfrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob Chang Biol 17:1461–74. doi:10.1111/j.1365-2486.2010.02358.x.

    Article  Google Scholar 

  • Oechel WC, Van Cleve K. 1986. The role of bryophytes in nutrient cycling in the Taiga. In: Van Cleve K, Cahpin FS, Flanigan PW, Viereck LA, Dyrness CT, Eds. Forest ecosystems in the Alaskan taiga. New York: Springer. p. 121–37.

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science 333(6045):988–93.

    Article  PubMed  CAS  Google Scholar 

  • Paltoniemi M, Thürig E, Ogle S, Palosuo T, Schrumpf M, Wutzler T, Butterbach-Bahl K, Chertov O, Komarov A, Mikhailov A, Gärdenäs A, Perry C, Liski J, Smith P, Mäkipää R. 2007. Models in country scale carbon accounting of forest soils. Silva Fennica 41(3):575–602.

    Google Scholar 

  • Palviainen M, Finér L, Mannerkoski H, Piirainen S, Starr M. 2005. Response of ground vegetation species to clear-cutting in a boreal forest: aboveground biomass and nutrient content during the first 7 years. Ecol Res 20:652–60.

    Google Scholar 

  • Running SW, Gower ST. 1991. FOREST-BCG, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–60.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56.

    Article  PubMed  CAS  Google Scholar 

  • Shaw CH, Bhatti JS, Sabourin KJ. 2005. An Ecosystem Carbon Database for Canadian Forests. Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, Edmonton, Alberta, Canada, Information Report, NOR-X-403.

  • Shaw CH, Banfield E, Kurz WA. 2008. Stratifying soils into pedogenically similar categories for modeling forest soil carbon. Can J Soil Sci 88(4):501–16.

    Article  CAS  Google Scholar 

  • Shetler G, Turetsky MR, Kane E, Kasischke E. 2008. Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests. Can J For Res 38:2328–36. doi:10.1139/X08-057.

    Article  CAS  Google Scholar 

  • Simard M, Lecomte N, Bergeron Y, Bernard P, Paré D. 2007. Forest productivity decline caused by successional paludification. Ecol Appl 17(6):1619–37.

    Article  PubMed  Google Scholar 

  • Skre P, Oechel WC. 1979. Moss production in a black spruce Picea mariana forest with permafrost near Fairbanks, Alaska, as compared with two permafrost-freestands. Holarctic Ecol 2:249–54.

    Google Scholar 

  • Soil Classification Working Group (SCWG). 1998. The Canadian system of soil classification. Agriculture and Agri-Food Canada Publ. 1646 (revised). NRC Research Press, Ottawa, ON.

  • Solga A, Bukhardt J, Zechmeister HG, Frahm J-P. 2005. Nitrogen content, 15N natural abundance and biomass of two pleurocarpous mosses Pleurozium schreberi (Brid.) Mitt. and Scleropodium purum (Hedw.) Limpr. in relation to atmospheric nitrogen deposition. Environ Pollut 134:465–73.

    Google Scholar 

  • Stinson G, Kurz WA, Smyth CE, Neilson ET, Dymond CC, Metsaranta JM, Boisvenue C, Rampley GJ, Li Q, White TM, Blain D. 2011. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob Chang Biol 17(6):2227–44. doi:10.1111/j.1365-2486.2010.02369.x.

    Article  Google Scholar 

  • Trettin CC, Song B, Jurgensen MF, Li C. 2001. Existing soil carbon models do not apply to forested wetlands. Asheville, NC: USDA Forest Service, Gen. Tech. Rep. SRS-46. 10 p.

  • ter Braak CJF. 1987. Ordination. In: Jongman RHG, ter Braak CJF, Tongeren OFR, Eds. Data analysis in community and landscape ecology. Waneningen, The Netherlands: Center for Agricultural Publishing and Documentation. p 91–173.

    Google Scholar 

  • ter Braak CJF, Prentice IC. 1988. A theory of gradient analysis. Adv Ecol Res 18:259–67.

    Google Scholar 

  • Toothhaker LE. 1993. Multiple comparison procedures. In: Lewis-Beck MS, Ed. Sage University paper series on quantitative applications in the social sciences. Series no. 07-089. Newbury Park, CA: Sage.

  • Trumbore SE, Harden JW. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. J Geophys Res 102(D24):28817–30. doi:10.1029/97JD0223.

    Article  CAS  Google Scholar 

  • Turetsky MR. 2003. The role of bryophytes in carbon and nitrogen cycling. The Bryologist 106(3):395–409. doi:10.1639/05.

    Article  Google Scholar 

  • Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder RK. 2008. Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96:1297–305.

    Article  Google Scholar 

  • Turetsky MR, Mack MC, Hollingsworth TN, Harden JW. 2010. The role of mosses in ecosystem succession and function in Alaska’s boreal forest. Can J For Res 40:1237–64.

    Article  Google Scholar 

  • Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila E-S. 2012. The resilience and functional role of moss in boreal and arctic ecosystems. New Photol 196:49–67.

    Article  CAS  Google Scholar 

  • Vanderpoorten A, Goffinet B. 2009. Ecological significance of bryophytes. In: Introduction to bryophytes. Cambridge, UK: Cambridge University Press. p. 37–9.

  • Vogel JG, Bond-Lamberty BP, Schuur EAG, Gower ST, Mack MC, O’Connell KEB, Valentine DW, Ruess RW. 2008. Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation. Glob Chang Biol 14:1503–16. doi:10.1111/j.1365-2486.2008.01600.x.

    Article  Google Scholar 

  • Wang C, Bond-Lamberty BEN, Gower ST. 2003. Carbon distribution of a well-and poorly-drained black spruce fire chronosequence. Glob Chang Biol 9:1066–79. doi:10.1046/j.1365-2486.2003.00645.x.

    Article  Google Scholar 

  • Wickland KP, Neff JC. 2008. Decomposition of black spruce forest soils: environment and chemical controls. Biogeochemistry 87(1):29–47. doi:10.1007/s10533-007-9166-3.

    Article  Google Scholar 

  • Zechmeister HG. 1997. Annual growth of four pleurocarpous moss species and their applications for biomonitoring heavy metals. Environ Monit Assess 52:441–51.

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided in part by Natural Resources Canada to McGill University, as well as from the Sustainable Forest Management Network. We thank Ken Baldwin for the data that were used to generate Figure 1, and Michelle Filiatrault at the Northern Forestry Center for generating both maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Ann Bona.

Additional information

Author Contributions

KAB conceived of study, wrote paper, performed the research, analyzed the data. JWF conceived of study, wrote paper. CS conceived of study, wrote paper, provided data. WAK conceived of study, wrote paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bona, K.A., Fyles, J.W., Shaw, C. et al. Are Mosses Required to Accurately Predict Upland Black Spruce Forest Soil Carbon in National-Scale Forest C Accounting Models?. Ecosystems 16, 1071–1086 (2013). https://doi.org/10.1007/s10021-013-9668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-013-9668-x

Keywords

Navigation