Skip to main content
Log in

Weak time-derivatives and no-arbitrage pricing

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We prove a risk-neutral pricing formula for a large class of semimartingale processes through a novel notion of weak time-differentiability that permits to differentiate adapted processes. In particular, the weak time-derivative isolates drifts of semimartingales and is null for martingales. Weak time-differentiability enables us to characterize no-arbitrage prices as solutions of differential equations, where interest rates play a key role. Finally, we reformulate the eigenvalue problem of Hansen and Scheinkman (Econometrica 77:177–234, 2009) by employing weak time-derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, San Diego (2003)

    MATH  Google Scholar 

  2. Aliprantis, C., Border, K.: Infinite Dimensional Analysis. Springer, Berlin (2006)

    MATH  Google Scholar 

  3. Alvarez, F., Jermann, U.J.: Using asset prices to measure the persistence of the marginal utility of wealth. Econometrica 73, 1977–2016 (2005)

    Article  MathSciNet  Google Scholar 

  4. Ansel, J., Stricker, C.: Lois de martingale, densités et décomposition de Föllmer Schweizer. Ann. Inst. Henri Poincaré Probab. Stat. 28, 375–392 (1992)

    MATH  Google Scholar 

  5. Bachelier, L.: Théorie de la Spéculation. Gauthier-Villars, Paris (1900)

    MATH  Google Scholar 

  6. Björk, T.: Arbitrage Theory in Continuous Time, 3rd edn. Oxford University Press, London (2009)

    MATH  Google Scholar 

  7. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)

    Article  MathSciNet  Google Scholar 

  8. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  9. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Bus. 75, 305–332 (2002)

    Article  Google Scholar 

  10. Cox, J.C., Ross, S.A.: The valuation of options for alternative stochastic processes. J. Financ. Econ. 3, 145–166 (1976)

    Article  Google Scholar 

  11. Craven, B.D.: Two properties of Bochner integrals. Bull. Aust. Math. Soc. 3, 363–368 (1970)

    Article  MathSciNet  Google Scholar 

  12. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  Google Scholar 

  13. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Article  MathSciNet  Google Scholar 

  14. Diestel, J., Uhl, J.J.: Vector Measures. Am. Math. Soc., Providence (1977)

    Book  Google Scholar 

  15. Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  16. Émery, M.: Compensation de processus VF non localement intégrables. In: Azema, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 152–160. Springer, Berlin (1980)

    Google Scholar 

  17. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 2nd edn. de Gruyter, Berlin (2004)

    Book  Google Scholar 

  18. Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In: Davis, M.H.A., Elliott, R.J. (eds.) Applied Stochastic Analysis, Stochastics Monographs, vol. 5, pp. 389–414. Gordon and Breach, London/New York (1991)

    Google Scholar 

  19. Geman, H., El Karoui, N., Rochet, J.C.: Changes of numéraire, changes of probability measure and option pricing. J. Appl. Probab. 32, 443–458 (1995)

    Article  MathSciNet  Google Scholar 

  20. Hansen, L.P., Heaton, J.C., Li, N.: Consumption strikes back? Measuring long-run risk. J. Polit. Econ. 116, 260–302 (2008)

    Article  Google Scholar 

  21. Hansen, L.P., Richard, S.F.: The role of conditioning information in deducing testable restrictions implied by dynamic asset pricing models. Econometrica 55, 587–613 (1987)

    Article  MathSciNet  Google Scholar 

  22. Hansen, L.P., Scheinkman, J.A.: Long-term risk: an operator approach. Econometrica 77, 177–234 (2009)

    Article  MathSciNet  Google Scholar 

  23. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    MATH  Google Scholar 

  24. Kou, S.G.: A jump-diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  Google Scholar 

  25. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  26. Margrabe, W.: The value of an option to exchange one asset for another. J. Finance 33, 177–186 (1978)

    Article  Google Scholar 

  27. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  Google Scholar 

  28. Meyer, C.D.: Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  29. Modigliani, F., Miller, M.H.: The cost of capital, corporation finance and the theory of investment. Am. Econ. Rev. 48, 261–297 (1958)

    Google Scholar 

  30. Platen, E., Bruti-Liberati, N.: Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer, Berlin (2010)

    Book  Google Scholar 

  31. Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  33. Samuelson, P.A.: Proof that properly anticipated prices fluctuate randomly. Ind. Manage. Rev. 6(2), 41–49 (1965)

    Google Scholar 

  34. Severino, F.: Long-term risk with stochastic interest rates. Working paper (2018). Available online at https://ssrn.com/abstract=3113718

  35. Williams, D.: Probability with Martingales. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

Download references

Acknowledgements

We thank Anna Battauz, Francesco Caravenna, Andrea Carioli, Simone Cerreia-Vioglio, Lars Peter Hansen, Ioannis Karatzas, Luigi Montrucchio, Fulvio Ortu, Emanuela Rosazza-Gianin, Martin Schweizer and two anonymous referees for useful comments. We also thank seminar participants at XL AMASES Annual Meeting in Catania (2016) and at XVIII Quantitative Finance Workshop at Università Bicocca, Milan (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Severino.

Additional information

Massimo Marinacci and Federico Severino acknowledge the financial support of ERC (grants INDIMACRO and SDDM-TEA respectively).

Appendix: A routine lemma

Appendix: A routine lemma

We state and prove a version of a standard result that is best suited for our purposes.

Lemma A.1

Let \(f:[t,T]\to \mathbb{R}\) be a measurable function.

  1. (i)

    If \(f\) is bounded, nonnegative, with compact support and \(\int _{t}^{T} f(\tau )g(\tau )d\tau =0\) for any \(g \in C_{c}((t,T))\), then \(f=0\) a.e.

  2. (ii)

    If \(\int _{t}^{T} f(\tau )g(\tau )d\tau =0\) for any \(g \in C_{c}((t,T))\), then \(f=0\) a.e.

Proof

(i) If \(f\) is strictly positive on a set \(A\) with positive measure, consider the indicator function \(\mathbf{1}_{A}\) and a sequence \((U_{n})\) of continuous positive approximations of \(\mathbf{1}_{A}\), obtained by convolution with a smooth positive kernel. As \(U_{n}\) converges to \(\mathbf{1}_{A}\) in \(L^{2}\), \(0 \leqslant \int _{t}^{T} f(\tau ) \mathbf{1}_{A}(\tau ) d\tau =\lim _{n} \int _{t}^{T} f( \tau ) U_{n}(\tau )d\tau =0\). Consequently, \(f\) is null a.e.

(ii) Suppose that \(f\) is positive with compact support. For any \(N>0\), consider \(f_{N}(s)=\min \{f(\tau ),N\}\). Then,

$$ 0 \leqslant \int _{t}^{T} f_{N}(\tau ) g(\tau )d\tau \leqslant \int _{t}^{T} f(\tau )g(\tau ) d\tau =0. $$

Therefore, each \(f_{N}\) is null a.e. by (i) and so is \(f\). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marinacci, M., Severino, F. Weak time-derivatives and no-arbitrage pricing. Finance Stoch 22, 1007–1036 (2018). https://doi.org/10.1007/s00780-018-0371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-018-0371-9

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation