Skip to main content
Log in

Stereochemistry of residues in turning regions of helical proteins

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

We have developed a geometrical approach to quantify differences in the stereochemistry of α-helical and turning regions in four iron proteins. Two spatial signatures are used to analyze residue coordinate data for each protein; and a third is employed to analyze amino-acid molecular volume data. The residue-by-residue analysis of the results, taken together with the finding that two major factors stabilize an α-helix (minimization of side-chain steric interference and intrachain H-bonding), lead to the conclusion that certain residues are preferentially selected for α-helix formation. In the sequential, de novo synthesis of a turning region, residues are preferentially selected such that the overall molecular volume profile (representing purely repulsive, excluded-volume effects) spans a small range Δ of values (Δ = 39.1 Å3) relative to the total range that could be spanned (Δ = 167.7 Å3). It follows that excluded-volume effects are of enormous importance for residues in helical regions as well as those in adjacent turning regions. Once steric effects are taken into account, down-range attractive interactions between residues come into play in the formation of α-helical regions. The geometry of α-helices can be accommodated by conformational changes in less-structured turning regions of a polypeptide, thereby producing a globally optimized (native) protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7:95–99

    Article  CAS  PubMed  Google Scholar 

  2. Ramachandran GN, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–438

    Article  CAS  PubMed  Google Scholar 

  3. Saven JG, Wolynes PG (1996) Local conformational signals and the statistical thermodynamics of collapsed helical proteins. J Mol Biol 257:199–216

    Article  CAS  PubMed  Google Scholar 

  4. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 48:545–600

    Article  CAS  PubMed  Google Scholar 

  5. Wolynes PG (2015) Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119:218–230

    Article  CAS  PubMed  Google Scholar 

  6. Lin X, Schafer NP, Lu W, Jin S, Chen M, Onuchic JN, Wolynes PG (2019) Forging tools for refining predicted protein structures. Proc Natl Acad Sci USA 116(19):9400–9409

    CAS  PubMed  Google Scholar 

  7. Kozak JJ, Gray HB, Wittung-Stafshede P (2018) Geometrical description of protein structural motifs. J Phys Chem B 122:11289–11294

    Article  CAS  PubMed  Google Scholar 

  8. Faraone-Mennella J, Tezca FA, Gray HB, Winkler JR (2006) Stability and folding kinetics of structurally characterized cytochrome c-b562. Biochemistry 45:10504–10511

    Article  CAS  PubMed  Google Scholar 

  9. Lee JC, Engman KC, Tezcan FA, Gray HB, Winkler JR (2002) Structural feature of cytochrome c’ folding intermediates revealed by fluorescence energy transfer kinetics. Proc Natl Acad Sci USA 99:14778–14782

    Article  CAS  PubMed  Google Scholar 

  10. Isogai Y, Imamura H, Nakae S, Sumi T, Takahashi KI, Nakagawa T, Tsuneshige A, Shirai T (2018) Tracing whale myoglobin evolution by resurrecting ancient proteins. Sci Rep 8:16883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sugimoto H, Makino M, Sawai H, Kawada N, Yoshizato K, Shiro Y (2004) Structural basis of human cytoglobin for ligand binding. J Mol Biol 339:873–885

    Article  CAS  PubMed  Google Scholar 

  12. Cohn EJ, Edsall JT (1943) In proteins, amino acids and peptides. Rheinhold Publishing Corporation, New York, pp 155–176 and 370–381

  13. Zamyatin AA (1972) Protein volume in solution. Prog Biophys Mol Biol 24:107–123

    Article  Google Scholar 

  14. Perkins SJ (1986) Protein volumes and hydration effects. The calculations of partial specific volumes, neutron scattering matchpoints and 280-nm absorption coefficients for protein and glycoproteins from amino acid sequences. Eur J Biochem 157:169–180

    Article  CAS  PubMed  Google Scholar 

  15. Kozak JJ, Piasecki J, Szymczak P (2016) Distribution function approach to the stability of fluids. Adv Chem Phys 161:359–394

    CAS  Google Scholar 

  16. Dill KA, MacCallum JL (2012) The protein-folding problem 50 years on. Science 338:1042–1046

    Article  CAS  PubMed  Google Scholar 

  17. Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15:3–16

    Article  CAS  PubMed  Google Scholar 

  18. Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci USA 89:8721–8725

    Article  CAS  PubMed  Google Scholar 

  19. Wolynes P, Luthey-Schulten Z, Onuchic J (1996) Fast-folding experiments and the topography of protein folding energy landscapes. Chem Biol 3:425–432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work at Caltech was supported by the National Institutes of Health (DK-019038 to HBG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry B. Gray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Appendix 1

See Figs. 9, 10, 11, 12.

Fig. 9
figure 9

Ratio T(i)/R(i − 2) to R(i + 2) vs residue number for cyt c’

Fig. 10
figure 10

Ratio T(i)/R(i − 2) to R(i + 2) vs residue number for sw-Mb

Fig. 11
figure 11

Difference R(i − 2) to R(i + 2) − T(i) vs residue number for cyt c’

Fig. 12
figure 12

Difference R(i − 2) to R(i + 2) − T(i) vs residue number for sw-Mb

Appendix 2

See Tables 4, 5, 6, 7.

Table 4 Residues in turning regions of cyt c-b562
Table 5 Residues in turning regions of cyt c’
Table 6 Residues in turning regions of sw-Mb
Table 7 Residues in turning regions of h-Mb

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, J.J., Gray, H.B. Stereochemistry of residues in turning regions of helical proteins. J Biol Inorg Chem 24, 879–888 (2019). https://doi.org/10.1007/s00775-019-01696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01696-9

Keywords

Navigation