Skip to main content

Advertisement

Log in

Regulations of organism by materials: a new understanding of biological inorganic chemistry

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Chemical biology generally highlights the modulation or control of life processes using chemical molecules. However, the rapid development of materials’ science has resulted in the increasing application of various functional materials in biological regulation. More importantly, the state of art of creating the integration of materials, either the inorganic or organic matrices, with living organisms has opened a window of opportunity to add the multiplex function to organisms. In this review, we suggest a new concept of materials’ biology that refers to promoting functional evolution of living organisms using material-based modification of structures, functions, and behaviors of biological organisms, which could change the modification of organisms from the current molecular-level regulation to materials’ level. Thus, this review focuses on the recent achievements of material-based modification of organisms that evolves the biological function of cells, bacteria, and viruses using biomimetic strategies. The bioinspired strategies for material-based modification, including layer-by-layer, biomimetic mineralization, interfacial reactive deposition, etc., are briefly introduced. Furthermore, the interaction between materials and organisms has performed a broad function that is not retained by organisms at their native state, which results in the applications in structural support, protection, environment control, energy, vaccine improvement, and cancer treatment. The significance of material-based regulations of organism is to use rationally designed materials to endow new physiological functions to organisms, which provides another perspective to understand biological inorganic chemistry.

Graphic Abstract

The roles of materials in chemical regulations of biology are highlighted. New characteristics as well as functions can be achieved by integration the rationally designed materials onto/into living organisms, following material-assisted biological improvement/evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission [15, 52]

Fig. 2

Reproduced with permission [17, 28, 38, 54]

Fig. 3

Reproduced with permission [34]

Fig. 4

Reproduced with permission [59]

Fig. 5

Reproduced with permission [8293]

Fig. 6

Reproduced with permission [22, 99, 100]

Fig. 7

Reproduced with permission [101]

Fig. 8

Reproduced with permission [85]

Similar content being viewed by others

References

  1. Chang CH, Liu WT, Hung HC, Gean CY, Tsai HM, Su CL, Gean PW (2017) BMC Cancer 17:905–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Priyadarsini S, Mohanty S, Mukherjee S, Basu S, Mishra M (2018) J Nanostruct Chem 8:123–137

    Article  CAS  Google Scholar 

  3. Hosseini S, Azari P, Farahmand E, Gan SN, Rothan HA, Yusof R, Koole LH, Djordjevic I, Ibrahim F (2015) Biosens Bioelectron 69:257–264

    Article  CAS  PubMed  Google Scholar 

  4. Wu Y, Yang Z, Law JB, He AY, Abbas AA, Denslin V, Kamarul T, Hui JH, Lee EH (2017) Tissue Eng Part A 23:43–54

    Article  CAS  PubMed  Google Scholar 

  5. Smith BL, Schäffer TE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Hansma PK (1999) Nature 399:761–763

    Article  CAS  Google Scholar 

  6. Morgan TT, Muddana HS, Muddana HS, Altinoǧlu EI, Rouse SM, Tabaković A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Nano Lett 8:4108–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fratzl P, Kolednik O, Fischerc FD, Dean MN (2016) Chem Soc Rev 45:252–267

    Article  CAS  PubMed  Google Scholar 

  8. Cusack M, Freer A (2008) Chem Rev 108:4433–4454

    Article  CAS  PubMed  Google Scholar 

  9. Nys Y, Gautron J, Garcia-Ruiz JM, Hinckec MT (2004) CR Palevol 3:549–562

    Article  Google Scholar 

  10. Hildebrand M (2008) Chem Rev 108:4855–4874

    Article  CAS  PubMed  Google Scholar 

  11. Sahney S, Wilson MV (2001) J Vert Paleontol 21:660–669

    Article  Google Scholar 

  12. Faivre D, Schuler D (2008) Chem Rev 108:4875–4898

    Article  CAS  PubMed  Google Scholar 

  13. George A, Veis A (2008) Chem Rev 108:4670–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yao SS, Jin B, Liu ZM, Shao CY, Zhao RB, Wang XY, Tang RK (2017) Adv Mater 29:1605903

    Article  CAS  Google Scholar 

  15. Liu ZM, Xu XR, Tang RK (2016) Adv Funct Mater 26:1862–1880

    Article  CAS  Google Scholar 

  16. Park JH, Yang SH, Lee J, Ko EH, Hong D, Choi IS (2014) Adv Mater 26:2001–2010

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Liu P, Jiang WG, Pan HH, Xu XR, Tang RK (2008) Angew Chem Int Ed 47:3560–3564

    Article  CAS  Google Scholar 

  18. Yang SH, Lee T, Seo E, Ko EH, Choi IS, Kim BS (2012) Macromol Biosci 12:61–66

    Article  CAS  PubMed  Google Scholar 

  19. Decher G, Hong JD, Schmitt J (1992) Thin Solid Films 210:831–835

    Article  Google Scholar 

  20. Sumper M, Kröger N (2004) J Mater Chem 14:2059–2065

    Article  CAS  Google Scholar 

  21. Bellomo EG, Deming TJ (2006) J Am Chem Soc 128:2276–2279

    Article  CAS  PubMed  Google Scholar 

  22. Xiong W, Yang Z, Zhai HL, Wang GC, Xu XR, Ma WM, Tang RK (2013) Chem Commun 49:7525–7527

    Article  CAS  Google Scholar 

  23. Wang B, Liu P, Tang YY, Pan HH, Xu XR, Tang RK (2010) PLoS One 5:e9963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang XY, Deng YQ, Shi HY, Mei Z, Zhao H, Xiong W, Liu P, Zhao Y, Qin CF, Tang RK (2010) Small 6:351–354

    Article  CAS  PubMed  Google Scholar 

  25. Maheshwari V, Fomenko DE, Singh G, Saraf RF (2009) Langmuir 26:371–377

    Article  CAS  Google Scholar 

  26. Kempaiah R, Chung A, Maheshwari V (2011) ACS Nano 5:6025–6031

    Article  CAS  PubMed  Google Scholar 

  27. Wang GC, Li XF, Mo LJ, Song ZY, Chen W, Deng YQ, Zhao H, Qin E, Qin CF, Tang RK (2012) Angew Chem Int Ed 124:10728–10731

    Article  Google Scholar 

  28. Lee J, Choi J, Park JH, Kim MH, Hong D, Cho H, Yang SH, Choi IS (2014) Angew Chem Int Ed 53:8056–8059

    Article  CAS  Google Scholar 

  29. Liang K, Richardson JJ, Lee KB, Chung TD, Lee H, Choi IS (2011) J Am Chem Soc 133:2795–2797

    Article  CAS  Google Scholar 

  30. Wang B, Wang GC, Zhao BJ, Chen JJ, Zhang XY, Tang RK (2014) Chem Sci 5:3463–3468

    Article  CAS  Google Scholar 

  31. Pipattanawarothai A, Suksai C, Srisook K, Trakulsujaritchok T (2017) Carbohydr Polym 178:190–199

    Article  CAS  PubMed  Google Scholar 

  32. Park JH, Choi IS, Yang SH (2015) Chem Commun 51:5523–5525

    Article  CAS  Google Scholar 

  33. Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Science 312:885–888

    Article  CAS  PubMed  Google Scholar 

  34. Wang GC, Cao RY, Chen R, Mo LJ, Han JF, Wang XY, Xu XR, Jiang T, Deng YQ, Lyu K, Zhu SY, Qin ED, Tang RK, Qin CF (2013) Proc Natl Acad Sci USA 110:7619–7624

    Article  PubMed  Google Scholar 

  35. Karlsson O, Lilja C (2008) Zoology 111:494–502

    Article  PubMed  Google Scholar 

  36. Richert L, Lavalle P, Payan E, Shu XZ, Prestwich GD, Stoltz JF, Schaaf P, Voegel JC, Picart C (2004) Langmuir 20:448–458

    Article  CAS  PubMed  Google Scholar 

  37. Park JH, Hong D, Lee J, Choi IS (2016) Acc Chem Res 49:792–800

    Article  CAS  PubMed  Google Scholar 

  38. Liang K, Richardson JJ, Doonan CJ, Mulet X, Ju Y, Cui JW, Caruso F, Falcaro P (2017) Angew Chem Int Ed 56:8510–8515

    Article  CAS  Google Scholar 

  39. Yang SH, Ko EH, Choi IS (2012) Langmuir 28:2151–2155

    Article  CAS  PubMed  Google Scholar 

  40. Hildebrand M (2008) Chem Rev 108:4855–4874

    Article  CAS  PubMed  Google Scholar 

  41. Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Angew Chem Int Ed 52:10766–10770

    Article  CAS  Google Scholar 

  42. Lee H, Dellatore SM, Miller WM, Messersmith PB (2017) Science 318:426–430

    Article  CAS  Google Scholar 

  43. Lee J, Cho H, Choi J, Doyeon K (2015) Nanoscale 7:18918–18922

    Article  CAS  PubMed  Google Scholar 

  44. Kim BJ, Park T, Moon HC, Park SY, Hong D, Ko EH, Kim JY, Hong JW, Han SW, Kim YG, Choi IS (2014) Angew Chem Int Ed 53:14443–14446

    Article  CAS  Google Scholar 

  45. Fakhrullin RF, García-Alonso J, Paunov VN (2010) Soft Matter 6:391–397

    Article  CAS  Google Scholar 

  46. Kempaiah R, Salqado S, Chung WL, Maheshwari V (2011) Chem Commun 47:11480–11482

    Article  CAS  Google Scholar 

  47. Fakhrullin RF, Lvov YM (2012) ACS Nano 6:4557–4565

    Article  CAS  PubMed  Google Scholar 

  48. Guo JL, Suástegui M, Sakimoto KK, Moody VM, Xiao G, Nocera DG, Joshi NS (2018) Science 362:813–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang QC, Song RB, Wu YC, Lin ZQ, Xie J, Tan CH, Loo JSC, Cao B, Zhang JR, Zhu JJ (2017) Angew Chem Int Ed 56:10516–10520

    Article  CAS  Google Scholar 

  50. Liang K, Richardson JJ, Cui JW, Caruso F, Doonan CJ, Falcaro P (2016) Adv Mater 28:7910–7914

    Article  CAS  PubMed  Google Scholar 

  51. McKenney PT, Driks A, Eichenberger P (2013) Nat Rev Microbiol 11:33–44

    Article  CAS  PubMed  Google Scholar 

  52. Riccò R, Liang WB, Li SB, Gassensmith JJ, Caruso F, Doonan C, Falcaro P (2018) ACS Nano 12:13–23

    Article  CAS  PubMed  Google Scholar 

  53. Hubel A (2011) Transfusion 51:82S–86S

    Article  PubMed  Google Scholar 

  54. Wongu Y, Eun HK, Kim MH, Park M, Hong D, Seisenbaeva GA, Kessler VG, Choi IS (2017) Angew Chem Int Ed 129:10842–10846

    Article  Google Scholar 

  55. Lee J, Choi IS, Yang SH (2015) Bull Korean Chem Soc 36:1278–1281

    CAS  Google Scholar 

  56. Kim BJ, Han S, Lee KB, Choi IS (2017) Adv Mater 29:1700784

    Article  CAS  Google Scholar 

  57. Smith AE, Helenius A (2004) Science 304:237–242

    Article  CAS  PubMed  Google Scholar 

  58. Flynn CE, Lee SW, Peelle BR, Belcher AM (2003) Acta Mater 51:5867–5880

    Article  CAS  Google Scholar 

  59. Zhou HY, Wang GC, Wang XY, Song ZY, Tang RK (2017) Angew Chem Int Ed 129:1–6

    Article  CAS  Google Scholar 

  60. Sanchez C, Arribart H, Guille MMG (2005) Nat Mater 4:277–288

    Article  CAS  PubMed  Google Scholar 

  61. Slocik JM, Naik RR, Stone MO, Wright DW (2015) J Mater Chem 15:749–753

    Article  CAS  Google Scholar 

  62. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  63. Snyder JC, Wiedenheft B, Lavin M, Roberto FF, Spuhler J, Ortmann AC, Douglas T, Young M (2007) Natl Acad Sci USA 2007(104):19102–19107

    Article  Google Scholar 

  64. Wallace AF, DeYoreo JJ, Dove PM (2009) J Am Chem Soc 131:5244–5250

    Article  CAS  PubMed  Google Scholar 

  65. Zhou K, Zhang JT, Wang QB (2015) Small 11:2505–2509

    Article  CAS  PubMed  Google Scholar 

  66. Lee Y, Kim J, Yun DS, Nam YS, Yang SH, Belcher AM (2012) Energy Environ Sci 5:8328–8334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reches M, Gazit E (2003) Science 300:625–627

    Article  CAS  PubMed  Google Scholar 

  68. Knez M, Sumser M, Bittner AM, Wege C, Jeske H, Martin TP, Kern K (2004) Adv Funct Mater 14:116–124

    Article  CAS  Google Scholar 

  69. Tao JH, Zhou DM, Zhang ZS, Xu XR, Tang RK (2009) Proc Natl Acad Sci 106:22096–22101

    Article  PubMed  Google Scholar 

  70. Belton DJ, Patwardhan SV, Annenkov VV, Danilovtseva EN, Perry CC (2008) Proc Natl Acad Sci USA 105:5963–5968

    Article  PubMed  Google Scholar 

  71. Chen XF, Fernando GJP, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, Corbett HJ, Primiero CA, Ansaldo AB, Frazer IH, Brown LE, Kendall MAF (2011) J Control Release 152:349–355

    Article  CAS  PubMed  Google Scholar 

  72. Walker JJ, Spear JR, Pace NR (2005) Nature 434:1011–1014

    Article  CAS  PubMed  Google Scholar 

  73. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Nature 421:841–843

    Article  CAS  Google Scholar 

  74. Wang GC, Wang HJ, Zhou HY, Nian QG, Song ZY, Deng YQ, Wang XY, Zhu SY, Li XF, Qin CF, Tang RK (2015) ACS Nano 9:799–808

    Article  CAS  PubMed  Google Scholar 

  75. Smith AE, Helenius A (2004) Science 304:237–242

    Article  CAS  PubMed  Google Scholar 

  76. Uyeki TM (2008) Respirology 13:S2–S9

    Article  PubMed  Google Scholar 

  77. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon KJ, Krauss S, Webster RG (1999) J Virol 73:8851–8856

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cowling BJ, Jin LM, Lau EHY, Liao QH, Wu P, Jiang H, Tsang KL, Zheng JD, Fang J, Chang ZR, Ni MY, Zhang Q, Ip DKM, Yu JX, Li Y, Wang LP, Tu WX, Meng L, Wu JTK, Luo HM, Li Q, Shu YL, Li ZJ, Feng ZJ, Yang WZ, Wang Y, Leung GM, Yu HJ (2013) Lancet 382:129–137

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chan PKS (2002) Clin Infect Dis 34:S58–S64

    Article  PubMed  Google Scholar 

  80. Kageyama K, Fujisaki S, Takashita E, Xu H, Yamada S, Uchida Y, Neumann G, Saito T, Kawaoka Y, Tashiro M (2013) Euro Surveill 18:7–21

    Google Scholar 

  81. Hernández-Hernández A, Vidal ML, Gómez-Morales J, Rodríguez-Navarro AB, Labas V, Gautron J, Nys Y, García Ruiz JM (2008) J Cryst Growth 310:1754–1759

    Article  CAS  Google Scholar 

  82. Wang XY, Sun CJ, Li PC, Wu TJ, Zhou HY, Yang D, Liu YC, Ma XC, Song ZY, Nian QG, Feng LQ, Qin CF, Chen L, Tang RK (2016) Adv Mater 28:694–700

    Article  CAS  PubMed  Google Scholar 

  83. Neumann G, Chen HL, Gao GF, Shu YL, Kawaoka Y (2010) Cell Res 20:51–61

    Article  CAS  PubMed  Google Scholar 

  84. Wang B, Liu P, Tang RK (2010) BioEssays 32:698–708

    Article  CAS  PubMed  Google Scholar 

  85. Wang XY, Liu XY, Xiao Y, Hao HB, Zhang Y, Tang RK (2018) Chem Eur J 24:11518–11529

    Article  CAS  PubMed  Google Scholar 

  86. Wang XY, Xiao Y, Hao HB, Zhang Y, Xu XR, Tang RK (2018) Adv Therap 1:1800079

    Article  Google Scholar 

  87. Wang XY, Deng YQ, Li SH, Wang GC, Qin E, Xu XR, Tang RK, Qin CF (2012) Adv Healthc Mater 1:443–449

    Article  CAS  PubMed  Google Scholar 

  88. Roberts DM, Nanda A, Havenga MJE, Abbink P, Lynch DM, Ewald BA, Liu JY, Thorner AR, Swanson PE, Gorgone DA, Lifton MA, Lemckert AAC, Holterman L, Chen B, Dilraj A, Carville A, Mansfield KG, Goudsmit J, Barouch DH (2006) Nature 441:239–243

    Article  CAS  PubMed  Google Scholar 

  89. Wang XY, Deng YQ, Yang D, Xiao Y, Zhao H, Nian QG, Xu XR, Li XF, Tang RK, Qin CF (2017) Chem Sci 8:8240–8824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ulmer JB, Valley U, Rappuoli R (2006) Nat Biotechnol 24:1377–1383

    Article  CAS  PubMed  Google Scholar 

  91. Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, Westendorf AM (2013) J Immunol 190:6221–6229

    Article  CAS  PubMed  Google Scholar 

  92. He Q, Mitchell A, Morcol T, Bell SJD (2002) Clin Diagn Lab Immun 9:1021–1024

    CAS  Google Scholar 

  93. Wang XY, Yang D, Li SH, Xu XR, Qin CF, Tang RK (2016) Biomaterials 106:268–294

    Article  CAS  Google Scholar 

  94. Li SB, Dharmarwardana M, Welch RP, Benjamin CE, Shamir A, Nielsen SO, Gassensmith JJ (2018) ACS Appl Mater Inter 10:18161–18169

    Article  CAS  Google Scholar 

  95. Luzuriaga MA, Welch RP, Dharmarwardana M, Benjamin CE, Li SB, Shahrivarkevishahi A, Popal S, Tuong L, Creswell C, Gassensmith JJ (2019) ACS Appl Mater Inter 11:9740–9746

    Article  CAS  Google Scholar 

  96. Paerl HW, Huisman J (2008) Science 320:57–58

    Article  CAS  PubMed  Google Scholar 

  97. Funari E, Testai E (2008) Crit Rev Toxicol 38:97–125

    Article  CAS  PubMed  Google Scholar 

  98. Pu P, Hu W, Yan JS, Wang GX, Hu CH (1998) Ecol Eng 10:179–190

    Article  Google Scholar 

  99. Xiong W, Tang YM, Shao CY, Zhao YQ, Jin B, Huang TT, Miao YN, Shu L, Ma WM, Xu XR, Tang RK (2017) Environ Sci Technol 51:12717–12726

    Article  CAS  PubMed  Google Scholar 

  100. Xiong W, Zhao XH, Zhu GX, Shao CY, Li YL, Ma WM, Xu XR, Tang RK (2015) Angew Chem Int Ed 54:11961–11965

    Article  CAS  Google Scholar 

  101. Zhao RB, Liu XY, Xinyan Yang XY, Jin B, Shao CY, Kang WJ, Tang RK (2018) Adv Mater 30:1801304

    Article  CAS  Google Scholar 

  102. Heuer-Jungemann A, Harimech PK, Brown T, Kanaras AG (2013) Nanoscale 5:9503–9510

    Article  CAS  PubMed  Google Scholar 

  103. Johnstone RW, Ruefli AA, Lowe SW (2002) Cell 108:153–164

    Article  CAS  PubMed  Google Scholar 

  104. Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, Xie J, Kim C, Song KH, Schwartz AG, Wang LV, Xia Y (2009) Nat Mater 8:935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Miyata H, Yamasaki M, Makino T, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S, Mori M, Doki Y (2015) J Surg Oncol 112:60–65

    Article  PubMed  Google Scholar 

  106. Sage AP, Tintut Y, Demer LL (2010) Nat Rev Cardiol 7:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao RB, Wang B, Yang XY, Xiao Y, Wang XY, Shao CY, Tang RK (2016) Angew Chem Int Ed 55:5225–5229

    Article  CAS  Google Scholar 

  108. Low PS, Henne WA, Doorneweerd DD (2008) Acc Chem Res 41:120–129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LY17B010001), the Fundamental Research Funds for the Central Universities of China, and the National Natural Science Foundation of China (21625105 and 21571155).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Wang or Ruikang Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wang, X. & Tang, R. Regulations of organism by materials: a new understanding of biological inorganic chemistry. J Biol Inorg Chem 24, 467–481 (2019). https://doi.org/10.1007/s00775-019-01673-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01673-2

Keywords

Navigation