Skip to main content
Log in

Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Excitatory amino acid transporter 1 (EAAT1) plays an important role in restricting the neurotoxicity of glutamate. Previous structure–function studies have provided evidence that reentrant helical hairpin loop (HP) 1 has predominant function during the transport cycle. The proposed internal gate HP1 is packed against transmembrane domain (TM) 2 and TM5 in its closed state, and two residues located in TM2 and HP2 of EAAT1 are in close proximity. However, the spatial relationship between TM2 and HP1 during the transport cycle remains unknown. In this study, we used chemical cross-linking of introduced cysteine pair (V96C and S366C) in a cysteine-less version of EAAT1 to assess the proximity of TM2 and HP1. Here, we show that inhibition of transport by copper(II)(1,10-phenanthroline)3 (CuPh) and cadmium ion (Cd2+) were observed in the V96C/S366C mutant. Glutamate or potassium significantly protected against the inhibition of transport activity of V96C/S366C by CuPh, while TBOA potentiated the inhibition of transport activity of V96C/S366C by CuPh. We also checked the kinetic parameters of V96C/S366C treated with or without CuPh in the presence of NaCl, NaCl + l-glutamate, NaCl + TBOA, and KCl, respectively. The sensitivity of V96C and S366C to membrane-impermeable sulfhydryl reagent MTSET [(2-trimethylammonium) methanethiosulfonate] was attenuated by glutamate or potassium. TBOA had no effect on the sensitivity of V96C and S366C to MTSET. These data suggest that the spatial relationship between Val-96 of TM2 and Ser-366 of HP1 is altered in the transport cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EAAT1:

Excitatory amino acid transporter 1

HP:

Hairpin loop

TM:

Transmembrane domain

CuPh:

Copper(II)(1,10-phenanthroline)3

TBOA:

d,l-Threo-β-benzyloxyaspartate

MTSET:

(2-Trimethylammonium)-methanethiosulfonate

References

  • Arriza JL, Kavanaugh MP, Fairman WA, Wu YN, Murdoch GH, North RA, Amara SG (1993) Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem 268(21):15329–15332

    CAS  PubMed  Google Scholar 

  • Arriza JL, Fairman WA, Wadiche JI, Murdoch GH, Kavanaugh MP, Amara SG (1994) Functional comparisons of three glutamate transporter subtypes cloned from motor cortex. J Neurosci 14(9):5559–5569

    CAS  PubMed  Google Scholar 

  • Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94(8):4155–4160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boudker O, Ryan RM, Yernool D, Shimamoto K, Gouaux E (2007) Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature 445(7126):387–393

    Article  CAS  PubMed  Google Scholar 

  • Brew H, Attwell D (1987) Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327(6124):707–709

    Article  CAS  PubMed  Google Scholar 

  • Brocke L, Bendahan A, Grunewald M, Kanner BI (2002) Proximity of two oppositely oriented re-entrant loops in the glutamate transporter GLT-1 identified by paired cysteine mutagenesis. J Biol Chem 277(6):3985–3992

    Article  CAS  PubMed  Google Scholar 

  • Crisman T, Qu S, Kanner BI, Forrest L (2009) Inward-facing conformation of glutamate transporters as revealed by their inverted-topology structural repeats. Proc Natl Acad Sci USA 106(49):20752–20757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fairman WA, Vandenberg RJ, Arriza JL, Kavanaugh MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375(6532):599–603

    Article  CAS  PubMed  Google Scholar 

  • Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci USA 83(21):8122–8126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Groeneveld M, Slotboom DJ (2007) Rigidity of the subunit interfaces of the trimeric glutamate transporter GltT during translocation. J Mol Biol 372(3):565–570

    Article  CAS  PubMed  Google Scholar 

  • Grunewald M, Kanner BI (2000) The accessibility of a novel reentrant loop of the glutamate transporter GLT-1 is restricted by its substrate. J Biol Chem 275(13):9684–9689

    Article  CAS  PubMed  Google Scholar 

  • Had-Aissouni L (2012) Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids 42(1):181–197

    Article  CAS  PubMed  Google Scholar 

  • Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360(6403):467–471

    Article  CAS  PubMed  Google Scholar 

  • Kanner BI, Bendahan A (1982) Binding order of substrates to the sodium and potassium ion coupled l-glutamic acid transporter from rat brain. Biochemistry 21(24):6327–6330

    Article  CAS  PubMed  Google Scholar 

  • Kavanaugh MP, Bendahan A, Zerangue N, Zhang Y, Kanner BI (1997) Mutation of an amino acid residue influencing potassium coupling in the glutamate transporter GLT-1 induces obligate exchange. J Biol Chem 272(3):1703–1708

    Article  CAS  PubMed  Google Scholar 

  • Keynan S, Suh YJ, Kanner BI, Rudnick G (1992) Expression of a cloned gamma-aminobutyric acid transporter in mammalian cells. Biochemistry 31(7):1974–1979

    Article  CAS  PubMed  Google Scholar 

  • Kleinberger-Doron N, Kanner BI (1994) Identification of tryptophan residues critical for the function and targeting of the gamma-aminobutyric acid transporter (subtype A). J Biol Chem 269(4):3063–3067

    CAS  PubMed  Google Scholar 

  • Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    Article  CAS  PubMed  Google Scholar 

  • Leung TC, Lui CN, Chen LW, Yung WH, Chan YS, Yung KK (2012) Ceftriaxone ameliorates motor deficits and protects dopaminergic neurons in 6-hydroxydopamine-lesioned rats. ACS Chem Neurosci 3(1):22–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levy LM, Warr O, Attwell D (1998) Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a Chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J Neurosci 18(23):9620–9628

    CAS  PubMed  Google Scholar 

  • Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT-1. J Biol Chem 288(10):7105–7116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pines G, Kanner BI (1990) Counterflow of l-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain. Biochemistry 29(51):11209–11214

    Article  CAS  PubMed  Google Scholar 

  • Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain l-glutamate transporter. Nature 360(6403):464–467

    Article  CAS  PubMed  Google Scholar 

  • Pita-Almenar JD, Zou SW, Colbert CM, Eskin A (2012) Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP. Learn Mem 19(12):615–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462(7275):880–885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan RM, Mindell JA (2007) The uncoupled chloride conductance of a bacterial glutamate transporter homolog. Nat Struct Mol Biol 14(5):365–371

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Vandenberg RJ (2002) Distinct conformational states mediate the transport and anion channel properties of the glutamate transporter EAAT-1. J Biol Chem 277(16):13494–13500

    Article  CAS  PubMed  Google Scholar 

  • Ryan RM, Mitrovic AD, Vandenberg RJ (2004) The chloride permeation pathway of a glutamate transporter and its proximity to the glutamate translocation pathway. J Biol Chem 279(20):20742–20751

    Article  CAS  PubMed  Google Scholar 

  • Seal RP, Leighton BH, Amara SG (2000) A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines. Neuron 25(3):695–706

    Article  CAS  PubMed  Google Scholar 

  • Shlaifer I, Kanner BI (2007) Conformationally sensitive reactivity to permeant sulfhydryl reagents of cysteine residues engineered into helical hairpin 1 of the glutamate transporter GLT-1. Mol Pharmacol 71(5):1341–1348

    Article  CAS  PubMed  Google Scholar 

  • Slotboom DJ, Sobczak I, Konings WN, Lolkema JS (1999) A conserved serine rich stretch in the glutamate transporter family forms a substrate-sensitive reentrant loop. Proc Natl Acad Sci USA 96(25):14282–14287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89(22):10955–10959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Utsunomiya-Tate N, Endou H, Kanai Y (1996) Cloning and functional characterization of a system ASC-like Na+-dependent neutral amino acid transporter. J Biol Chem 271(25):14883–14890

    Article  CAS  PubMed  Google Scholar 

  • Wadiche JI, Amara SG, Kavanaugh MP (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15(3):721–728

    Article  CAS  PubMed  Google Scholar 

  • Yernool D, Boudker O, Jin Y, Gouaux E (2004) Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 431(7010):811–818

    Article  CAS  PubMed  Google Scholar 

  • Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383(6601):634–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Peng Zhang for making Fig. 6. This work was supported by the National Natural Science Foundation of China Grant 31170734, the International Centre for Genetic Engineering and Biotechnology Grant CRP/CHN11-01, the Specialized Research Fund for the Doctoral Program of Higher Education Grant 20114433120002, the Science and Technology Planning Project of Guangdong Province 2012B050200003, the Science and Technology Planning Project of Guangzhou 2013J4500018, and the Specialized Research Fund for talent introduction of colleges and universities of Guangdong Province Grant 2011430-1.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaogang Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, X. & Qu, S. Cysteine mutagenesis reveals alternate proximity between transmembrane domain 2 and hairpin loop 1 of the glutamate transporter EAAT1. Amino Acids 46, 1697–1705 (2014). https://doi.org/10.1007/s00726-014-1731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1731-1

Keywords

Navigation