Skip to main content
Log in

On the expansion of ribosomal proteins and RNAs in eukaryotes

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

aa:

Amino acid(s)

nt:

Nucleotide(s)

EO:

Ribosomal proteins found only in eukaryotes

EA:

Ribosomal proteins aligning between eukaryotes and archaea

EAB:

Ribosomal proteins aligning among eukaryotes, archaea and bacteria

ES:

Expansion segment(s) of ribosomal RNAs

LSU:

The large cytoplasmic ribosome subunit (50S in bacteria and archaea, 60S in eukaryotes)

SSU:

The small cytoplasmic ribosome subunit (30S in bacteria and archaea, 40S in eukaryotes)

sec:

A translocon component

srp:

A signal recognition particle component

PCN:

Homoionic cluster with >2 and ≥50 % ionic residues

References

  • Adelman MR, Sabatini DD, Blobel G (1973) Ribosome-membrane interaction. Nondestructive disassembly of rat liver rough microsomes into ribosomal and membranous components. J Cell Biol 56:206–229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Adesnik M, Maschio F (1981) Segregation of specific classes of messenger RNA into free and membrane-bound polysomes. Eur J Biochem 114:271–284

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) (2002) Molecular biology of the cell. Garland, New York

    Google Scholar 

  • Alkemar G, Nygard O (2004) Secondary structure of two regions in expansion segments ES3 and ES6 with the potential of forming a tertiary interaction in eukaryotic 40S ribosomal subunits. RNA 10:403–411

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Soding J, Westhof E, Wilson DN, Beckmann R (2010a) Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-A resolution. Proc Natl Acad Sci USA 107:19748–19753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Armache JP, Jarasch A, Anger AM, Villa E, Becker T, Bhushan S, Jossinet F, Habeck M, Dindar G, Franckenberg S, Marquez V, Mielke T, Thomm M, Berninghausen O, Beatrix B, Soding J, Westhof E, Wilson DN, Beckmann R (2010b) Localization of eukaryote-specific ribosomal proteins in a 5.5-A cryo-EM map of the 80S eukaryotic ribosome. Proc Natl Acad Sci USA 107:19754–19759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bange G, Murat G, Sinning I, Hurt E, Kressler D (2013) New twist to nuclear import: when two travel together. Commun Integr Biol 6:e24792

    Article  PubMed Central  PubMed  Google Scholar 

  • Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G (2001) Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107:361–372

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M (2011) The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334:1524–1529

    Article  CAS  PubMed  Google Scholar 

  • Bowman LH, Emerson CP Jr (1977) Post-transcriptional regulation of ribosome accumulation during myoblast differentiation. Cell 10:587–596

    Article  CAS  PubMed  Google Scholar 

  • Busse I, Preisfeld A (2002) Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J Mol Evol 55:757–767

    Article  CAS  PubMed  Google Scholar 

  • Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Muller KM, Pande N, Shang Z, Yu N, Gutell RR (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinform 3:2

    Article  Google Scholar 

  • Chandramouli P, Topf M, Menetret JF, Eswar N, Cannone JJ, Gutell RR, Sali A, Akey CW (2008) Structure of the mammalian 80S ribosome at 8.7 A resolution. Structure 16:535–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chattopadhyay S, Pal S, Pal D, Sarkar D, Chandra S, Das Gupta C (1999) Protein folding in Escherichia coli: role of 23S ribosomal RNA. Biochim Biophys Acta 1429:293–298

    Article  CAS  PubMed  Google Scholar 

  • Christian BE, Spremulli LL (2012) Mechanism of protein biosynthesis in mammalian mitochondria. Biochim Biophys Acta 1819:1035–1054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciriello G, Gallina C, Guerra C (2010) Analysis of interactions between ribosomal proteins and RNA structural motifs. BMC Bioinform 11(Suppl 1):S41

    Article  Google Scholar 

  • Clark CG, Tague BW, Ware VC, Gerbi SA (1984) Xenopus laevis 28S ribosomal RNA: a secondary structure model and its evolutionary and functional implications. Nucleic Acids Res 12:6197–6220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cui XA, Zhang H, Palazzo AF (2011) p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol 10:e1001336

    Article  Google Scholar 

  • Davydova N, Streltsov V, Wilce M, Liljas A, Garber M (2002) L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J Mol Biol 322:635–644

    Article  CAS  PubMed  Google Scholar 

  • Diefenbach RJ, Diefenbach E, Douglas MW, Cunningham AL (2004) The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B. Biochem Biophys Res Commun 319:987–992

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Lee JK, Tjhen R, Li S, Pan H, Stroud RM, James TL (2005) Crystal structure of the first KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.7 A. J Biol Chem 280:38823–38830

    Article  CAS  PubMed  Google Scholar 

  • Ellis JJ, Broom M, Jones S (2007) Protein-RNA interactions: structural analysis and functional classes. Proteins 66:903–911

    Article  CAS  PubMed  Google Scholar 

  • Escobar JS, Glemin S, Galtier N (2011) GC-biased gene conversion impacts ribosomal DNA evolution in vertebrates, angiosperms, and other eukaryotes. Mol Biol Evol 28:2561–2575

    Article  CAS  PubMed  Google Scholar 

  • Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8:181–188

    Article  CAS  PubMed  Google Scholar 

  • Greber BJ, Boehringer D, Godinic-Mikulcic V, Crnkovic A, Ibba M, Weygand-Durasevic I, Ban N (2012) Cryo-EM structure of the archaeal 50S ribosomal subunit in complex with initiation factor 6 and implications for ribosome evolution. J Mol Biol 418:145–160

    Article  CAS  PubMed  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58:700–754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hassouna N, Michot B, Bachellerie JP (1984) The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucleic Acids Res 12:3563–3583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Herskovits AA, Bibi E (2000) Association of Escherichia coli ribosomes with the inner membrane requires the signal recognition particle receptor but is independent of the signal recognition particle. Proc Natl Acad Sci USA 97:4621–4626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsu D, Shih LM, Zee YC (1994) Degradation of rRNA in Salmonella strains: a novel mechanism to regulate the concentrations of rRNA and ribosomes. J Bacteriol 176:4761–4765

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakel S, Gorlich D (1998) Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17:4491–4502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakovljevic J, Ohmayer U, Gamalinda M, Talkish J, Alexander L, Linnemann J, Milkereit P, Woolford JL Jr (2012) Ribosomal proteins L7 and L8 function in concert with six A(3) assembly factors to propagate assembly of domains I and II of 25S rRNA in yeast 60S ribosomal subunits. RNA 18:1805–1822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalpaxis DL, Karahalios P, Papapetropoulou M (1998) Changes in ribosomal activity of Escherichia coli cells during prolonged culture in sea salts medium. J Bacteriol 180:3114–3119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N (2011) Crystal structure of the eukaryotic 60S ribosomal subunit in complex with initiation factor 6. Science 334:941–948

    Article  CAS  PubMed  Google Scholar 

  • Klukas CK, Dawid IB (1976) Characterization and mapping of mitochondrial ribosomal RNA and mitochondrial DNA in Drosophila melanogaster. Cell 9:615–625

    Article  CAS  PubMed  Google Scholar 

  • Kondo J, Westhof E (2011) Classification of pseudo pairs between nucleotide bases and amino acids by analysis of nucleotide-protein complexes. Nucleic Acids Res 39:8628–8637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger T, Zentgraf H, Scheer U (2007) Intranucleolar sites of ribosome biogenesis defined by the localization of early binding ribosomal proteins. J Cell Biol 177:573–578

    Article  PubMed Central  PubMed  Google Scholar 

  • Kruppa J, Sabatini DD (1977) Release of poly A(+) messenger RNA from rat liver rough microsomes upon disassembly of bound polysomes. J Cell Biol 74:414–427

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuhn P, Weiche B, Sturm L, Sommer E, Drepper F, Warscheid B, Sourjik V, Koch HG (2011) The bacterial SRP receptor, SecA and the ribosome use overlapping binding sites on the SecY translocon. Traffic 12:563–578

    Article  CAS  PubMed  Google Scholar 

  • Kuzoff RK, Sweere JA, Soltis DE, Soltis PS, Zimmer EA (1998) The phylogenetic potential of entire 26S rDNA sequences in plants. Mol Biol Evol 15:251–263

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  CAS  PubMed  Google Scholar 

  • Lande MA, Adesnik M, Sumida M, Tashiro Y, Sabatini DD (1975) Direct association of messenger RNA with microsomal membranes in human diploid fibroblasts. J Cell Biol 65:513–528

    Article  CAS  PubMed  Google Scholar 

  • Larsson SL, Nygard O (2001) Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits. Biochemistry 40:3222–3231

    Article  CAS  PubMed  Google Scholar 

  • Leffers H, Andersen AH (1993) The sequence of 28S ribosomal RNA varies within and between human cell lines. Nucleic Acids Res 21:1449–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    Article  CAS  PubMed  Google Scholar 

  • Mallardo M, Deitinghoff A, Muller J, Goetze B, Macchi P, Peters C, Kiebler MA (2003) Isolation and characterization of Staufen-containing ribonucleoprotein particles from rat brain. Proc Natl Acad Sci USA 100:2100–2105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Menetret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW (2008) Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16:1126–1137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michot B, Bachellerie JP, Raynal F (1982) Sequence and secondary structure of mouse 28S rRNA 5′ terminal domain. Organisation of the 5.8S–28S rRNA complex. Nucleic Acids Res 10:5273–5283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore PB (2009) The ribosome returned. J Biol 8:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Morrow MW, Brodsky JL (2001) Yeast ribosomes bind to highly purified reconstituted Sec61p complex and to mammalian p180. Traffic 2:705–716

    Article  CAS  PubMed  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930

    Article  CAS  PubMed  Google Scholar 

  • Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 42:211–223

    Article  CAS  PubMed  Google Scholar 

  • Nwagwu M, Nana M (1980) Ribonucleic acid synthesis in embryonic chick muscle, rates of synthesis and half-lives of transfer and ribosomal RNA species. J Embryol Exp Morphol 56:253–267

    CAS  PubMed  Google Scholar 

  • Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, Sato TA, Anzai K (2002) Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem 277:37804–37810

    Article  CAS  PubMed  Google Scholar 

  • Osborne AR, Rapoport TA, van den Berg B (2005) Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550

    Article  CAS  PubMed  Google Scholar 

  • Parker SL, Parker MS, Sah R, Sallee F (2005) Angiogenesis and rhodopsin-like receptors: a role for N-terminal acidic residues? Biochem Biophys Res Commun 335:983–992

    Article  CAS  PubMed  Google Scholar 

  • Parker MS, Balasubramaniam A, Parker SL (2012) On the segregation of protein ionic residues by charge type. Amino Acids 43:2231–2247

    Article  CAS  PubMed  Google Scholar 

  • Pearson WR (2000) Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 132:185–219

    CAS  PubMed  Google Scholar 

  • Plafker SM, Macara IG (2002) Ribosomal protein L12 uses a distinct nuclear import pathway mediated by importin 11. Mol Cell Biol 22:1266–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plantinga MJ, Korennykh AV, Piccirilli JA, Correll CC (2011) The ribotoxin restrictocin recognizes its RNA substrate by selective engagement of active site residues. Biochemistry 50:3004–3013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Potter MD, Nicchitta CV (2002) Endoplasmic reticulum-bound ribosomes reside in stable association with the translocon following termination of protein synthesis. J Biol Chem 277:23314–23320

    Article  CAS  PubMed  Google Scholar 

  • Prinz A, Behrens C, Rapoport TA, Hartmann E, Kalies KU (2000) Evolutionarily conserved binding of ribosomes to the translocation channel via the large ribosomal RNA. EMBO J 19:1900–1906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV (2008) Signal sequence- and translation-independent mRNA localization to the endoplasmic reticulum. RNA 14:445–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu X, Wen JD, Lancaster L, Noller HF, Bustamante C, Tinoco I Jr (2011) The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475:118–121

    Article  CAS  PubMed  Google Scholar 

  • Rout MP, Blobel G, Aitchison JD (1997) A distinct nuclear import pathway used by ribosomal proteins. Cell 89:715–725

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DD, Tashiro Y, Palade GE (1966) On the attachment of ribosomes to microsomal membranes. J Mol Biol 19:503–524

    Article  CAS  PubMed  Google Scholar 

  • Sameshima M, Liebhaber SA, Schlessinger D (1981) Dual pathways for ribonucleic acid turnover in WI-38 but not in I-cell human diploid fibroblasts. Mol Cell Biol 1:75–81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shasmal M, Sengupta J (2012) Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features. PLoS One 7:e31742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17:1888–1897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stephens SB, Dodd RD, Brewer JW, Lager PJ, Keene JD, Nicchitta CV (2005) Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol Biol Cell 16:5819–5831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sweeney R, Fan Q, Yao MC (1996) Antisense ribosomes: rRNA as a vehicle for antisense RNAs. Proc Natl Acad Sci USA 93:8518–8523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tai LR, Chou CW, Lee IF, Kirby R, Lin A (2013) The quantitative assessment of the role played by basic amino acid clusters in the nuclear uptake of human ribosomal protein L7. Exp Cell Res 319:367–375

    Article  CAS  PubMed  Google Scholar 

  • Terribilini M, Sander JD, Lee JH, Zaback P, Jernigan RL, Honavar V, Dobbs D (2007) RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res 35:W578–W584

    Article  PubMed Central  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchiumi T, Terao K, Ogata K (1983) Ribosomal proteins cross-linked to 28-S and 18-S rRNA separated by sedimentation after ultraviolet irradiation of rat-liver ribosomes. Eur J Biochem 132:495–499

    Article  CAS  PubMed  Google Scholar 

  • Ueno T, Kaneko K, Sata T, Hattori S, Ogawa-Goto K (2012) Regulation of polysome assembly on the endoplasmic reticulum by a coiled-coil protein, p180. Nucleic Acids Res 40:3006–3017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakeman JA, Maden BE (1989) 28 S ribosomal RNA in vertebrates. Locations of large-scale features revealed by electron microscopy in relation to other features of the sequences. Biochem J 258:49–56

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Brown SJ (2006) BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic Acids Res 34:W243–W248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wanker EE, Sun Y, Savitz AJ, Meyer DI (1995) Functional characterization of the 180-kD ribosome receptor in vivo. J Cell Biol 130:29–39

    Article  CAS  PubMed  Google Scholar 

  • Ware VC, Tague BW, Clark CG, Gourse RL, Brand RC, Gerbi SA (1983) Sequence analysis of 28S ribosomal DNA from the amphibian Xenopus laevis. Nucleic Acids Res 11:7795–7817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whitesides GM (2001) The once and future nanomachine. Sci Am 285:78–83

    Article  CAS  PubMed  Google Scholar 

  • Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB (2009) Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res 37:4898–4918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the U.S. National Institutes of Health Grant HD13703.

Conflict of interest

The authors declare no conflict of interest related to his study.

Note added in proof

While this survey was considered for publication, Fedyukina, Jennaro and Cavagnero (J Biol Chem 2014, M113.507707) reported differences in hydropathy and basicity of ribosomal proteins between halophile and non-halophile prokaryotes, and also presented evidence for homoionic charge segregation in these proteins [in accord with our current and previous observations (Parker et al. 2012)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven L. Parker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 606 kb)

Supplementary material 2 (DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, M.S., Sah, R., Balasubramaniam, A. et al. On the expansion of ribosomal proteins and RNAs in eukaryotes. Amino Acids 46, 1589–1604 (2014). https://doi.org/10.1007/s00726-014-1704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-014-1704-4

Keywords

Navigation