Advertisement

Amino Acids

, Volume 41, Issue 4, pp 773–780 | Cite as

S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function

  • Gabriela Schneider
  • Anna FilipekEmail author
Review Article

Abstract

The CacyBP/SIP protein (S100A6 binding protein and Siah-1 interacting protein) was originally discovered in Ehrlich ascites tumor cells as a S100A6 (calcyclin) target (Filipek and Wojda in Biochem J 320:585–587, 1996; Filipek and Kuźnicki in J Neurochem 70(5):1793–1798, 1998) and later on as a Siah-1 interacting protein (Matsuzawa and Reed in Mol Cell 7(5):915–926, 2001). CacyBP/SIP binds several target proteins such as some calcium binding proteins of the S100 family (Filipek et al. in J Biol Chem 277(32):28848–28852, 2002), Skp1 (Matsuzawa and Reed in Mol Cell 7(5):915–926, 2001), tubulin (Schneider et al. in Biochim Biophys Acta 1773(11):1628–1636, 2007) and ERK1/2 (Kilanczyk et al. in Biochem Biophys Res Commun 380:54–59, 2009). Studies concerning distribution of CacyBP/SIP show that it is present in various tissues and that a particularly high level of CacyBP/SIP is observed in brain (Jastrzebska et al. in J Histochem Cytochem 48(9):1195–1202, 2000). Regarding the function of CacyBP/SIP, there are some reports suggesting its role in cellular processes such as ubiquitination, proliferation, differentiation, tumorigenesis, cytoskeletal rearrangement or regulation of transcription. This review describes the properties of CacyBP/SIP and summarizes all findings concerning its cellular function.

Keywords

CacyBP/SIP S100A6 (calcyclin) Ubiquitination Proliferation Differentiation Tumorigenesis 

Notes

Acknowledgments

We thank Dr. W. Lesniak for helpful discussion and critical reading of the manuscript. This work was supported by a grant to A. Filipek (2 P04A 01030) from the Ministry of Science and Higher Education of Poland and by statutory funds from the Nencki Institute of Experimental Biology.

References

  1. Alonso AD, Grundke-Iqbal I, Barra HS et al (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94(1):298–303PubMedCrossRefGoogle Scholar
  2. Amson RB, Nemani M, Roperch JP et al (1996) Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc Natl Acad Sci USA 93(9):3953–3957PubMedCrossRefGoogle Scholar
  3. Au KW, Kou CY, Woo AY et al (2006) Calcyclin binding protein promotes DNA synthesis and differentiation in rat neonatal cardiomyocytes. J Cell Biochem 98(3):555–566PubMedCrossRefGoogle Scholar
  4. Bai C, Sen P, Hofmann K et al (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274PubMedCrossRefGoogle Scholar
  5. Bhattacharya S, Lee YT, Michowski W et al (2005) The modular structure of SIP facilitates its role in stabilizing multiprotein assemblies. Biochemistry 44(27):9462–9471PubMedCrossRefGoogle Scholar
  6. Chen X, Han G, Zhai H, Zhang F et al (2008) Expression and clinical significance of CacyBP/SIP in pancreatic cancer. Pancreatology 8(4–5):470–477PubMedCrossRefGoogle Scholar
  7. Chim SS, Cheung SS, Tsui SK (2000) Differential gene expression of rat neonatal heart analyzed by suppression subtractive hybridization and expressed sequence tag sequencing. J Cell Biochem 80(1):24–36PubMedCrossRefGoogle Scholar
  8. Connelly C, Hieter P (1996) Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86(2):275–285PubMedCrossRefGoogle Scholar
  9. De Petris L, Orre LM, Kanter L et al (2009) Tumor expression of S100A6 correlates with survival of patients with stage I non-small-cell lung cancer. Lung Cancer 63(3):410–417PubMedCrossRefGoogle Scholar
  10. Demir O, Kurnaz IA (2008) Wildtype Elk-1, but not a SUMOylation mutant, represses egr-1 expression in SH-SY5Y neuroblastomas. Neurosci Lett 437:20–24PubMedCrossRefGoogle Scholar
  11. Filipek A, Kuźnicki J (1998) Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem 70(5):1793–1798PubMedCrossRefGoogle Scholar
  12. Filipek A, Wojda U (1996) p30, a novel protein target of mouse calcyclin (S100A6). Biochem J 320:585–587PubMedGoogle Scholar
  13. Filipek A, Jastrzebska B, Nowotny M et al (2002a) CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277(32):28848–28852PubMedCrossRefGoogle Scholar
  14. Filipek A, Jastrzebska B, Nowotny M et al (2002b) Ca2+-dependent translocation of the calcyclin-binding protein in neurons and neuroblastoma NB-2a cells. J Biol Chem 277(23):21103–21109PubMedCrossRefGoogle Scholar
  15. Filipek A, Schneider G, Mietelska A et al (2008) Age-dependent changes in neuronal distribution of CacyBP/SIP: comparison to tubulin and the tau protein. J Neural Transm 115(9):1257–1264PubMedCrossRefGoogle Scholar
  16. Fukushima T, Zapata JM, Singha NC et al (2006) Critical function for SIP, a ubiquitin E3 ligase component of the beta-catenin degradation pathway, for thymocyte development and G1 checkpoint. Immunity 24(1):29–39PubMedCrossRefGoogle Scholar
  17. Gounari F, Aifantis I, Khazaie K et al (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2(9):863–869PubMedCrossRefGoogle Scholar
  18. Herington JL, Bi J, Martin JD et al (2007) Beta-catenin (CTNNB1) in the mouse uterus during decidualization and the potential role of two pathways in regulating its degradation. J Histochem Cytochem 55(9):963–974PubMedCrossRefGoogle Scholar
  19. Jastrzebska B, Filipek A, Nowicka D et al (2000) Calcyclin (S100A6) binding protein (CacyBP) is highly expressed in brain neurons. J Histochem Cytochem 48(9):1195–1202PubMedCrossRefGoogle Scholar
  20. Kilanczyk E, Filipek S, Jastrzebska B et al (2009) CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1. Biochem Biophys Res Commun 380:54–59PubMedCrossRefGoogle Scholar
  21. Kim YS, Ham BK, Paek KH et al (2006) An Arabidopsis homologue of human seven-in-absentia-interacting protein is involved in pathogen resistance. Moll Cells 21(3):389–394Google Scholar
  22. Kitagawa K, Skowyra D, Elledge SJ et al (1999) SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell 4(1):21–33PubMedCrossRefGoogle Scholar
  23. Komatsu K, Kobune-Fujiwara Y, Andoh A et al (2000) Increased expression of S100A6 at the invading fronts of the primary lesion and liver metastasis in patients with colorectal adenocarcinoma. Br J Cancer 83(6):769–774PubMedCrossRefGoogle Scholar
  24. Komatsu K, Murata K, Kameyama M et al (2002) Expression of S100A6 and S100A4 in matched samples of human colorectal mucosa, primary colorectal adenocarcinomas and liver metastases. Oncology 63(2):192–200PubMedCrossRefGoogle Scholar
  25. Lee YT, Dimitrova YN, Schneider G et al (2008) Structure of the S100A6 complex with a fragment from the C-terminal domain of Siah-1 interacting protein: a novel mode for S100 protein target recognition. Biochemistry 47(41):10921–10932PubMedCrossRefGoogle Scholar
  26. Li S, Li Y, Carthew RW et al (1997) Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90(3):469–478PubMedCrossRefGoogle Scholar
  27. Liu J, Stevens J, Rote CA et al (2001) Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7(5):927–936PubMedCrossRefGoogle Scholar
  28. Lowy AM, Clements WM, Bishop J et al (2006) β-Catenin/Wnt signaling regulates expression of the membrane type 3 matrix metalloproteinase in gastric cancer. Cancer Res 66(9):4734–4741PubMedCrossRefGoogle Scholar
  29. Lustig B, Behrens J (2003) The Wnt signaling pathway and its role in tumor development. J Cancer Res Clin Oncol 129(4):199–221PubMedGoogle Scholar
  30. Matigian N, Windus L, Smith H et al (2007) Expression profiling in monozygotic twins discordant for bipolar disorder reveals dysregulation of the WNT signalling pathway. Mol Psychiatry 12(9):815–825PubMedCrossRefGoogle Scholar
  31. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926PubMedCrossRefGoogle Scholar
  32. Matsuzawa S, Takayama S, Froesch BA et al (1998) p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J 17(10):2736–2747PubMedCrossRefGoogle Scholar
  33. Matsuzawa S, Li C, Ni CZ et al (2003) Structural analysis of Siah1 and its interactions with Siah-interacting protein (SIP). J Biol Chem 278(3):1837–1840PubMedCrossRefGoogle Scholar
  34. Mezhybovska M, Wikström K, Ohd JF et al (2006) The inflammatory mediator leukotriene D4 induces beta-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. J Biol Chem 281(10):6776–6784PubMedCrossRefGoogle Scholar
  35. Michetti F, Grilli Caiola M, Botti F et al (1992) Immunochemical and immunohistochemical detection of S-100-like immunoreactivity in spinach tissues. J Histochem Cytochem 40(6):839–843PubMedCrossRefGoogle Scholar
  36. Ning X, Sun S, Hong L et al (2007) Calcyclin-binding protein inhibits proliferation, tumorigenicity, and invasion of gastric cancer. Mol Cancer Res 5(12):1254–1262PubMedCrossRefGoogle Scholar
  37. Nowotny M, Bhattacharya S, Filipek A et al (2000) Characterization of the interaction of calcyclin (S100A6) and calcyclin-binding protein. J Biol Chem 275(40):31178–31182PubMedCrossRefGoogle Scholar
  38. Nowotny M, Spiechowicz M, Jastrzebska B et al (2003) Calcium-regulated interaction of Sgt1 with S100A6 (calcyclin) and other S100 proteins. J Biol Chem 278(29):26923–26928PubMedCrossRefGoogle Scholar
  39. Ohuchida K, Mizumoto K, Yu J et al (2007) S100A6 is increased in a stepwise manner during pancreatic carcinogenesis: clinical value of expression analysis in 98 pancreatic juice samples. Cancer Epidemiol Biomark Prev 16(4):649–654CrossRefGoogle Scholar
  40. Pircher TJ, Geiger JN, Zhang D et al (2001) Integrative signaling by minimal erythropoietin receptor forms and c-Kit. J Biol Chem 276(12):8995–9002PubMedCrossRefGoogle Scholar
  41. Reese J, Das SK, Paria BC et al (2001) Global gene expression analysis to identify molecular markers of uterine receptivity and embryo implantation. J Biol Chem 276(47):44137–44145PubMedCrossRefGoogle Scholar
  42. Sangkhathat S, Kusafuka T, Miao J et al (2006) In vitro RNA interference against beta-catenin inhibits the proliferation of pediatric hepatic tumors. Int J Oncol 28(3):715–722PubMedGoogle Scholar
  43. Santelli E, Leone M, Li C et al (2005) Structural analysis of Siah1–Siah-interacting protein interactions and insights into the assembly of an E3 ligase multiprotein complex. J Biol Chem 280(40):34278–34287PubMedCrossRefGoogle Scholar
  44. Sbroggiò M, Ferretti R, Percivalle E et al (2008) The mammalian CHORD-containing protein melusin is a stress response protein interacting with Hsp90 and Sgt1. FEBS Lett 582(13):1788–1794PubMedCrossRefGoogle Scholar
  45. Schneider G, Nieznanski K, Kilanczyk E et al (2007) CacyBP/SIP interacts with tubulin in neuroblastoma NB2a cells and induces formation of globular tubulin assemblies. Biochim Biophys Acta 1773(11):1628–1636PubMedCrossRefGoogle Scholar
  46. Sharrocks AD (2001) The ETS domain transcription factor family. Nat Rev Mol Cell Biol 2:827–837PubMedCrossRefGoogle Scholar
  47. Shi Y, Hu W, Yin F et al (2004) Regulation of drug sensitivity of gastric cancer cells by human calcyclin-binding protein (CacyBP). Gastric Cancer 7(3):160–166PubMedCrossRefGoogle Scholar
  48. Słomnicki LP, Nawrot B, Leśniak W (2009) S100A6 binds p53 and affects its activity. Int J Biochem Cell Biol 41(4):784–790PubMedCrossRefGoogle Scholar
  49. Stradal TB, Gimona M (1999) Ca(2+)-dependent association of S100A6 (Calcyclin) with the plasma membrane and the nuclear envelope. J Biol Chem 274(44):31593–31596PubMedCrossRefGoogle Scholar
  50. Sun S, Ning X, Liu J et al (2007) Overexpressed CacyBP/SIP leads to the suppression of growth in renal cell carcinoma. Biochem Biophys Res Commun 356(4):864–871PubMedCrossRefGoogle Scholar
  51. Vanhoutte P, Nissen JL, Brug B, Gaspera BD et al (2001) Opposing role of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J Biol Chem 276:5189–5196PubMedCrossRefGoogle Scholar
  52. Vickers ER, Kasza A, Kurnaz IA, Seifert A et al (2004) Ternary complex factor-serum response factor complex-regulated gene activity is required for cellular proliferation and inhibition of apoptotic cell death. Mol Cell Biol 24:10340–10351PubMedCrossRefGoogle Scholar
  53. Vimalachandran D, Greenhalf W, Thompson C et al (2005) High nuclear S100A6 (Calcyclin) is significantly associated with poor survival in pancreatic cancer patients. Cancer Res 65(8):3218–3225PubMedGoogle Scholar
  54. Weterman MA, Stoopen GM, van Muijen GN et al (1992) Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mic. Cancer Res 52(5):1291–1296PubMedGoogle Scholar
  55. Wu J, Tan X, Peng X et al (2003) Translocation and phosphorylation of calcyclin binding protein during retinoic acid-induced neuronal differentiation of neuroblastoma SH-SY5Y cells. J Biochem Mol Biol 36(4):354–358PubMedCrossRefGoogle Scholar
  56. Xia ZB, Dai MS, Magoulas C et al (2000) Differentially expressed genes during in vitro differentiation of murine embryonic stem cells transduced with a human erythropoietin receptor cDNA. J Hematother Stem Cell Res 9(5):651–658PubMedCrossRefGoogle Scholar
  57. Yang YJ, Liu WM, Zhou JX et al (2006) Expression and hormonal regulation of calcyclin-binding protein (CacyBP) in the mouse uterus during early pregnancy. Life Sci 78(7):753–760PubMedCrossRefGoogle Scholar
  58. Yang YQ, Zhang LJ, Dong H et al (2007) Upregulated expression of S100A6 in human gastric cancer. J Dig Dis 8(4):186–193PubMedCrossRefGoogle Scholar
  59. Zhai H, Shi Y, Jin H et al (2008) Expression of calcyclin-binding protein/Siah-1 interacting protein in normal and malignant human tissues: an immunohistochemical survey. J Histochem Cytochem 56(8):765–772PubMedCrossRefGoogle Scholar
  60. Zhao Y, You H, Liu F et al (2002) Differentially expressed gene profiles between multidrug resistant gastric adenocarcinoma cells and their parental cells. Cancer Lett 185:211–218PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Nencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations