Skip to main content
Log in

Other-regarding preferences in organizational hierarchies

  • Published:
Journal of Economics Aims and scope Submit manuscript

Abstract

In this paper, we provide new theoretical insights about the role of collusion in organizational hierarchies by combining the standard principal–supervisor–agent framework with a theory of social preferences. Extending Tirole’s (J Law Econ Organ 2(2):181–214, 1986) model of hierarchy with the inclusion of Fehr and Schmidt (Q J Econ 114(3):817–868, 1999) type of other-regarding preferences, the links between inequity aversion, collusive behavior and changes in optimal contracts are studied. It turns out that other-regarding preferences do change the collusive behavior among parties depending on the nature of both agent’s and supervisor’s other-regarding preferences. The most prominent impact is on the optimal effort levels. When the agent is inequity averse, the principal can exploit this fact to make agent exert higher effort level than she would otherwise. In order to satisfy the participation constraint of the supervisor, the effort level induced for the agent becomes lower when the supervisor is status seeker, and it is higher when the supervisor is inequity averse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Ledyard (1995) and Fehr and Schmidt (2006) for public and private good environments respectively.

  2. See, among others, Itoh (2004), Rey Biel (2008), Neilson and Stowe (2010) and Koszegi (2014).

  3. We refer the reader to Tirole (1986) and Fehr and Schmidt (1999) for discussion and justification of the environment and assumptions.

  4. See, among others, Blinder and Choi (1990), Agell and Lundborg (1995), Campbell and Kamlani (1997), Bewley (2002) and Pepper and Gore (2015).

  5. We thank an anonymous referee for pointing this out.

  6. We refer the reader to Tirole (1986) for detailed information on possible state misrepresentations and conditions for signing a side contract between the employees.

  7. Throughout the discussion about the context of the supervisor’s report, we assume that when the supervisor observes the level of productivity in the environment, her report is considered as credible by the principal. On the other hand, the agent cannot make verifiable and credible announcements about the productivity level.

  8. The superscript B denotes the benchmark values for our problem.

References

  • Agell J, Lundborg P (1995) Theories of pay and unemployment: survey evidence from swedish manufacturing firms. Scand J Econ 97(2):295–307

    Article  Google Scholar 

  • Ariely D (2009) Predictably irrational. HarperCollins, New York

    Google Scholar 

  • Bac M (1996) Corruption, supervision, and the structure of hierarchies. J Law Econ Organ 12(2):277–298

    Article  Google Scholar 

  • Bac M, Kucuksenel S (2006) Two types of collusion in a model of hierarchical agency. J Inst Theor Econ 162(2):262–276

    Article  Google Scholar 

  • Bartling B, Von Siemens FA (2010) The intensity of incentives in firms and markets: moral hazard with envious agents. Labour Econ 17(3):598–607

    Article  Google Scholar 

  • Bewley TF (2002) Why wages don’t fall during a recession. Harvard University Press, Cambridge

    Google Scholar 

  • Blinder AS, Choi DH (1990) A shred of evidence on theories of wage stickiness. Q J Econ 105(4):1003–1015

    Article  Google Scholar 

  • Campbell CM, Kamlani KS (1997) The reasons for wage rigidity: evidence from a survey of firms. Q J Econ 112(3):759–789

    Article  Google Scholar 

  • Cato S (2013) The first-order approach to the principal-agent problems under inequality aversion. Oper Res Lett 41(5):526–529

    Article  Google Scholar 

  • Dur R, Glazer A (2008) Optimal contracts when a worker envies his boss. J Law Econ Organ 24(1):120–137

    Article  Google Scholar 

  • Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooperation. Q J Econ 114(3):817–868

    Article  Google Scholar 

  • Fehr E, Schmidt KM (2006) The economics of fairness, reciprocity and altruism-experimental evidence and new theories. In: Kolm S-C, Ythier JM (eds) Handbook of the economics of giving, altruism and reciprocity, vol 1. Elsevier, New York, pp 615–691

    Google Scholar 

  • Gartenberg C, Wulf J (2017) Pay harmony? Social comparison and performance compensation in multibusiness firms. Organ Sci 28(1):39–55

    Article  Google Scholar 

  • Grund C, Sliwka D (2005) Envy and compassion in tournaments. J Econ Manag Strategy 14(1):187–207

    Article  Google Scholar 

  • Itoh H (2004) Moral hazard and other-regarding preferences. Jpn Econ Rev 55(1):18–45

    Article  Google Scholar 

  • Kahneman D (2003) A perspective on judgment and choice: mapping bounded rationality. Am Psychol 58(9):697

    Article  Google Scholar 

  • Koszegi B (2014) Behavioral contract theory. J Econ Lit 52(4):1075–1118

    Article  Google Scholar 

  • Kragl J, Schmid J (2009) The impact of envy on relational employment contracts. J Econ Behav Organ 72(2):766–779

    Article  Google Scholar 

  • Ledyard JO (1995) Public Goods: A survey of experimental research. In: Kagel JH, Roth AE (eds) Handbook of experimental economics. Princeton University Press, Princeton, NJ, pp 111–194

    Google Scholar 

  • Neilson WS, Stowe J (2010) Piece-rate contracts for other-regarding workers. Econ Inq 48(3):575–586

    Article  Google Scholar 

  • Nickerson JA, Zenger TR (2008) Envy, comparison costs, and the economic theory of the firm. Strateg Manag J 29(13):1429–1449

    Article  Google Scholar 

  • Pepper A, Gore J (2015) Behavioral agency theory: New foundations for theorizing about executive compensation. J Manag 41(4):1045–1068

    Google Scholar 

  • Rey Biel P (2008) Inequity aversion and team incentives. Scand J Econ 110(2):297–320

    Article  Google Scholar 

  • Tirole J (1986) Hierarchies and bureaucracies: on the role of collusion in organizations. J Law Econ Organ 2(2):181–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Kucuksenel.

Appendix

Appendix

Lagrangian for the solution of the principal’s problem with other-regarding parties is:

$$\begin{aligned} L= & {} \sum _{i} p_{i} ( \theta _{i} + e_{i} - W_{i} - S_{i} ) + \nu \left( \sum _{i} p_{i} V(S_{i}-\lambda _{S}(S_{i} - W_{i})) - {\overline{V}}\right) \\&+\, \mu \left( \sum _{i} p_{i} U(W_{i} - g(e_i)-\lambda _{A}(S_{i} - W_{i})) - {\overline{U}}\right) \\&+\, \gamma ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3}) - W_2 + g(e_2 - \Delta \theta ) + \lambda _{A}(S_{2} - W_{2})) \\&+ \,\psi ((S_{4}-\lambda _{S}(S_{4}-W_{4})(1+2\lambda _{A})+(W_{4}-g(e_{4})-\lambda _{A}(S_{4}-W_{4}))(1-2\lambda _{S})\\&-\,(S_{3}-\lambda _{S}(S_{3}-W_{3}))(1+2\lambda _{A})-(W_{3}-g(e_{3})-\lambda _{A}(S_{3}-W_{3}))(1-2\lambda _{S}))\\&+ \,\pi ((S_{3}-\lambda _{S}(S_{3}-W_{3})(1+2\lambda _{A})+(W_{3}-g(e_{3})-\lambda _{A}(S_{3}-W_{3}))(1-2\lambda _{S})\\&-\,(S_{2}-\lambda _{S}(S_{2}-W_{2}))(1+2\lambda _{A})-(W_{2}-g(e_{2}-\Delta \theta )\\&-\,\lambda _{A}(S_{2}-W_{2}))(1-2\lambda _{S})) \end{aligned}$$

Note that we first ignore (CIC1) ; we are going to show that the solution satisfies (CIC1) .

Taking the derivatives of the Lagrangian above with respect to \( S_{i},W_{i},e_{i} \) results in following FOCs:

$$\begin{aligned}&\nu V' ( S_1 - \lambda _{S}(S_{1} - W_{1}) ) = \frac{1}{1-\lambda _{S}} + \mu \frac{\lambda _{A}}{1-\lambda _{S}} U' ( W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1})) \nonumber \\\end{aligned}$$
(1)
$$\begin{aligned}&\nu V' ( S_2 - \lambda _{S}(S_{2} - W_{2}) ) = \frac{1}{1-\lambda _{S}} + \mu \frac{\lambda _{A}}{1-\lambda _{S}} U' ( W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2})) \nonumber \\&\qquad - \,\frac{\gamma \lambda _{A}}{p_2(1-\lambda _{S})} + \frac{\pi (1+\lambda _{A}-\lambda _{S})}{p_2(1-\lambda _{S})} \end{aligned}$$
(2)
$$\begin{aligned}&\nu V' ( S_3 - \lambda _{S}(S_{3} - W_{3}) ) = \frac{1}{1-\lambda _{S}} + \mu \frac{\lambda _{A}}{1-\lambda _{S}} U' ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3})) \nonumber \\&\qquad +\, \frac{\gamma \lambda _{A}}{p_3(1-\lambda _{S})} + \frac{(\psi - \pi ) (1+\lambda _{A}-\lambda _{S})}{p_3(1-\lambda _{S})} \end{aligned}$$
(3)
$$\begin{aligned}&\nu V' ( S_4 - \lambda _{S}(S_{4} - W_{4}) ) = \frac{1}{1-\lambda _{S}} + \mu \frac{\lambda _{A}}{1-\lambda _{S}} U' ( W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})) \nonumber \\&\qquad -\, \frac{\psi (1+\lambda _{A}-\lambda _{S})}{p_4(1-\lambda _{S})} \end{aligned}$$
(4)
$$\begin{aligned}&\mu U' ( W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1})) = \frac{1}{1+\lambda _{A}} - \nu \frac{\lambda _S}{1+\lambda _A} V' ( S_1 - \lambda _{S}(S_{1} - W_{1}) ) \nonumber \\\end{aligned}$$
(5)
$$\begin{aligned}&\mu U' ( W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2})) = \frac{1}{1+\lambda _{A}} - \nu \frac{\lambda _S}{1+\lambda _A} V' ( S_2 - \lambda _{S}(S_{2} - W_{2}) ) \nonumber \\&\qquad +\, \frac{\gamma }{p_2}+ \frac{\pi (1+\lambda _{A}-\lambda _{S})}{p_2(1+\lambda _A)} \end{aligned}$$
(6)
$$\begin{aligned}&\mu U' ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3})) = \frac{1}{1+\lambda _{A}} - \nu \frac{\lambda _S}{1+\lambda _A} V' ( S_3 - \lambda _{S}(S_{3} - W_{3}) ) \nonumber \\&\qquad - \,\frac{\gamma }{p_3} + \frac{(\psi - \pi )(1+\lambda _{A}-\lambda _{S})}{p_3(1+\lambda _A)} \end{aligned}$$
(7)
$$\begin{aligned}&\mu U' ( W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})) = \frac{1}{1+\lambda _{A}} - \nu \frac{\lambda _S}{1+\lambda _A} V' ( S_4 - \lambda _{S}(S_{4} - W_{4}) ) \nonumber \\&\qquad -\, \frac{\psi (1+\lambda _{A}-\lambda _{S})}{p_4(1+\lambda _A)} \end{aligned}$$
(8)
$$\begin{aligned}&\mu U' ( W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1})) g' (e_1) = 1\end{aligned}$$
(9)
$$\begin{aligned}&\mu U' ( W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2})) g' (e_2) -\frac{(\gamma + \pi (1-2\lambda _S))}{p_2} g'(e_2 - \Delta \theta ) =1 \nonumber \\\end{aligned}$$
(10)
$$\begin{aligned}&\mu U' ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3})) g' (e_3) +\frac{\gamma + (\pi - \psi )(1-2\lambda _S)}{p_3} g'(e_3) =1 \nonumber \\\end{aligned}$$
(11)
$$\begin{aligned}&\mu U' ( W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})) g' (e_4) + \frac{\psi (1-2\lambda _S)}{p_4} g' (e_4) = 1. \end{aligned}$$
(12)

Proof of Proposition 1

Substituting (5), (6), (7), (8) into (9), (10), (11), (12) gives that \( g' (e_1) = g' (e_3) = g' (e_4) = \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S}\) and \( g' (e_2) < \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S} \). Since \( g''(e_i) > 0 \), the rank of effort levels is \( e_1 = e_3 = e_4 > e_2 \). Suppose \( \lambda _A = -\lambda _S \). Then \( g' (e_1) = g' (e_3) = g' (e_4) = 1\) and \( g' (e_2) < 1 \). This implies that \( e_1 = e_3 = e_4 = e^{*} > e_2 \).

Suppose \( \lambda _A < -\lambda _S \). Then \( g'(e_2)< g' (e_1) = g' (e_3) = g' (e_4) < 1\). This means that \( e^{*}> e_1 = e_3 = e_4 > e_2 \). Upper boundary of \( g' (e_2) \) goes to \( \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S} \) in our case. Thus, the principal sets \( g' (e_2) = \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S} - \varepsilon \) where \( \varepsilon > 0 \), in order to guarantee the maximum output level. Since \( \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S}- \varepsilon = g' (e_2) < g' (e_2^{B}) = 1 - \varepsilon \), the ranking of effort levels is \( e_2 < e_2^{B} \).

Now suppose \( \lambda _A > -\lambda _S \). Then \( g' (e_1) = g' (e_3) = g' (e_4) > 1\). This implies that \( e_1 = e_3 = e_4 = e^{*} \). Upper boundary of \( g' (e_2) \) also increases to \( \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S} \) in this case. Thus, the principal sets \( g' (e_2) = \frac{1 + \lambda _A - \lambda _S}{1-2\lambda _S} - \varepsilon \) where \( \varepsilon > 0 \), in order to get the maximum profit. Since \( g' (e_2) > g' (e_2^{B}) = 1 - \varepsilon \), we have \( e_2 > e_2^{B} \). For a given \( \varepsilon \) (where \( \frac{\partial \varepsilon }{\partial \Delta \theta } > 0 \)), when we have \( \frac{\lambda _A+\lambda _S}{1-2\lambda _S} = \varepsilon \) we get \( g' (e_2) = g' (e^{*}) = 1 \). Therefore, there exist some values for \( \lambda _A \) and \( \lambda _S \) where \( e_2 = e^{*} \). Finally, it is easy to see that \( e_2 > e^{*} \) when \( \frac{\lambda _A+\lambda _S}{1-2\lambda _S} > \varepsilon \), and \( e_2 < e^{*} \) when \( \frac{\lambda _A+\lambda _S}{1-2\lambda _S} < \varepsilon \). \(\square \)

Proof of Proposition 2

First substitute (5), (6), (7) and (8) in (1), (2), (3) and (4) to get the following equations:

$$\begin{aligned} \nu V' ( S_1 - \lambda _{S}(S_{1} - W_{1}) )= & {} \frac{1+2 \lambda _{A}}{1+ \lambda _{A}-\lambda _S} \end{aligned}$$
(13)
$$\begin{aligned} \nu V' ( S_2 - \lambda _{S}(S_{2} - W_{2}) )= & {} \frac{1+2 \lambda _{A}}{1+ \lambda _{A}-\lambda _S} + \frac{\pi (1+2\lambda _{A})}{p_2} \end{aligned}$$
(14)
$$\begin{aligned} \nu V' ( S_3 - \lambda _{S}(S_{3} - W_{3}))= & {} \frac{1+2 \lambda _{A}}{1+ \lambda _{A}-\lambda _S} + \frac{(\psi - \pi ) (1+2\lambda _{A})}{p_3} \end{aligned}$$
(15)
$$\begin{aligned} \nu V' ( S_4 - \lambda _{S}(S_{4} - W_{4}))= & {} \frac{1+2 \lambda _{A}}{1+ \lambda _{A}-\lambda _S} - \frac{\psi (1+2\lambda _{A})}{p_4}. \end{aligned}$$
(16)

Now, we use (1), (2), (3) and (4) in (5), (6), (7) and (8) to get the following equations:

$$\begin{aligned} \mu U' ( W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1}))= & {} \frac{1-2 \lambda _{S}}{1+ \lambda _{A}-\lambda _S} \end{aligned}$$
(17)
$$\begin{aligned} \mu U' ( W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2}))= & {} \frac{1-2 \lambda _{S}}{1+ \lambda _{A}-\lambda _S} + \frac{\gamma }{p_2}+\frac{\pi (1-2 \lambda _{S})}{p_2} \end{aligned}$$
(18)
$$\begin{aligned} \mu U' ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3}))= & {} \frac{1-2 \lambda _{S}}{1+ \lambda _{A}-\lambda _S} - \frac{\gamma }{p_3} + \frac{(\psi - \pi ) (1-2 \lambda _{S})}{p_3} \nonumber \\\end{aligned}$$
(19)
$$\begin{aligned} \mu U' ( W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4}))= & {} \frac{1-2 \lambda _{S}}{1+ \lambda _{A}-\lambda _S} - \frac{\psi (1-2 \lambda _{S})}{p_4}. \end{aligned}$$
(20)

To show that (AIC) is binding, suppose \( \gamma = 0 \). Then, using the conditions (14), (15) and (18), (19), we get the following equality

$$\begin{aligned} \frac{V' ( S_2 - \lambda _{S}(S_{2} - W_{2}) )}{V' ( S_3 - \lambda _{S}(S_{3} - W_{3}) )} = \frac{U' ( W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2}))}{U' ( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3}))}. \end{aligned}$$
(21)

On the other hand, (AIC) implies that

$$\begin{aligned}&W_{3}-g(e_{3})-\lambda _{A}(S_{3}-W_{3}) \ge W_{2}-g(e_{2}-\Delta \theta )-\lambda _{A}(S_{2}-W_{2}) \nonumber \\&\quad > W_{2}-g(e_{2})-\lambda _{A}(S_{2}-W_{2}). \end{aligned}$$
(22)

From (21) and (22), we get the following inequality

$$\begin{aligned} S_3 - \lambda _{S}(S_{3} - W_{3}) > S_2 - \lambda _{S}(S_{2} - W_{2}). \end{aligned}$$
(23)

Equations (22) and (23) mean that \( S_3 - \lambda _{S}(S_{3} - W_{3})+W_{3}-g(e_{3})-\lambda _{A}(S_{3}-W_{3}) > S_2 - \lambda _{S}(S_{2} - W_{2}) + W_{2}-g(e_{2}-\Delta \theta )-\lambda _{A}(S_{2}-W_{2}) \), i.e. (CIC3) does not bind. This implies that \( \pi = 0 \). Then, Eqs. (18) and (19) imply that:

$$\begin{aligned} W_{2}-g(e_{2})-\lambda _{A}(S_{2}-W_{2}) \ge W_{3}-g(e_{3})-\lambda _{A}(S_{3}-W_{3}). \end{aligned}$$
(24)

Note that (22) and (24) cannot hold at the same time. This implies that there is a contradiction which completes this part of our proof and shows that \( \gamma > 0 \), i.e. (AIC) is binding.

Next, suppose that the second collusion constraint is not binding, i.e. \( \psi = 0 \). Equations (19) and (20) imply that \( W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3}) > W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4}) \). Using \(\lambda _{A} > 0 \) we get

$$\begin{aligned} \frac{W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3})}{1+2\lambda _{A}} > \frac{W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})}{1+2\lambda _{A}}. \end{aligned}$$
(25)

From (15) and (16), we also have \( S_3 - \lambda _{S}(S_{3} - W_{3}) \ge S_4 - \lambda _{S}(S_{4} - W_{4}) \). Using the assumption that \( \lambda _S < 0.5 \) we can write

$$\begin{aligned} \frac{S_3 - \lambda _{S}(S_{3} - W_{3})}{1-2\lambda _S} \ge \frac{S_4 - \lambda _{S}(S_{4} - W_{4})}{1-2\lambda _S}. \end{aligned}$$
(26)

Equations (25) and (26) imply that

$$\begin{aligned}&\frac{S_3 - \lambda _{S}(S_{3} - W_{3})}{1-2\lambda _S} + \frac{W_3 - g(e_3) - \lambda _{A}(S_{3} - W_{3})}{1+2\lambda _{A}} \nonumber \\&\quad > \frac{S_4 - \lambda _{S}(S_{4} - W_{4})}{1-2\lambda _S} + \frac{W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})}{1+2\lambda _{A}}, \end{aligned}$$
(27)

which violates (CIC2) . Thus, \( \psi > 0 \) and (CIC2) is binding.

We now show that (CIC3) is binding. Assume to the contrary that (CIC3) is not binding, i.e. \( \pi = 0 \). Then, Eqs. (14) and (15) imply that \( S_2 - \lambda _{S}(S_{2} - W_{2}) > S_3 - \lambda _{S}(S_{3} - W_{3}) \).

We know that (AIC) is binding, so (CIC3) can now be stated as \( (CIC3^{'}): S_3 - \lambda _{S}(S_{3} - W_{3}) \ge S_2 - \lambda _{S}(S_{2} - W_{2}) \). However, this is a contradiction to the implication of Eqs. (14) and (15). Therefore, \( \pi > 0 \) and (CIC3) is binding.

With the following proof of Proposition 3, we show that (CIC1) is already satisfied with the current solution and hence (CIC1) is not binding. \(\square \)

Proof of Proposition 3

We know that both (AIC) and (CIC3) are binding. This fact implies that \( S_2 - \lambda _{S}(S_{2} - W_{2}) = S_3 - \lambda _{S}(S_{3} - W_{3}) \). Moreover, (13), (14) and (16) imply that \( S_4 - \lambda _{S}(S_{4} - W_{4})> S_1 - \lambda _{S}(S_{1} - W_{1}) > S_2 - \lambda _{S}(S_{2} - W_{2}) \). Therefore, the ranking of the supervisor’s utilities at different states is \( S_4 - \lambda _{S}(S_{4} - W_{4})> S_1 - \lambda _{S}(S_{1} - W_{1}) > S_2 - \lambda _{S}(S_{2} - W_{2}) = S_3 - \lambda _{S}(S_{3} - W_{3}) \). From Eqs. (17), (18) and (20), we have

$$\begin{aligned}&W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})> W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1}) \nonumber \\&\quad > W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2}). \end{aligned}$$
(28)

Combining the fact that (CIC2) is binding and \( g(e_3) = g(e_4) \) yields that

$$\begin{aligned}&\frac{S_4 - \lambda _{S}(S_{4} - W_{4})}{1-2\lambda _S}+\frac{W_{4}-\lambda _{A}(S_{4}-W_{4})}{1+2\lambda _{A}}\nonumber \\&\quad = \frac{S_3 - \lambda _{S}(S_{3} - W_{3})}{1-2\lambda _S}+\frac{W_{3}-\lambda _{A}(S_{3}-W_{3})}{1+2\lambda _{A}}. \end{aligned}$$

Since \( S_4 - \lambda _{S}(S_{4} - W_{4}) > S_3 - \lambda _{S}(S_{3} - W_{3}) \), we have \( W_{3}-g(e_3)-\lambda _{A}(S_{3}-W_{3}) > W_{4}-g(e_4)-\lambda _{A}(S_{4}-W_{4}) \). This completes the proof of the following ranking \( W_{3}-g(e_3)-\lambda _{A}(S_{3}-W_{3})> W_4 - g(e_4) - \lambda _{A}(S_{4} - W_{4})> W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1}) > W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2}) \). Now, it can be easily verified that (CIC1) is already satisfied and not binding, since \( S_1 - \lambda _{S}(S_{1} - W_{1}) > S_2 - \lambda _{S}(S_{2} - W_{2}) \) and \( W_1 - g(e_1) - \lambda _{A}(S_{1} - W_{1}) > W_2 - g(e_2) - \lambda _{A}(S_{2} - W_{2}) \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saygili, K., Kucuksenel, S. Other-regarding preferences in organizational hierarchies. J Econ 126, 201–219 (2019). https://doi.org/10.1007/s00712-018-0628-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00712-018-0628-y

Keywords

JEL Classification

Navigation