Skip to main content
Log in

Identification, classification, and evolution of putative xylosyltransferases from algae

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Xylosyltransferases (XylTs) play key roles in the biosynthesis of many different polysaccharides. These enzymes transfer d-xylose from UDP-xylose to substrate acceptors. In this study, we identified 30 XylTs from primary endosymbionts (green algae, red algae, and glaucophytes) and secondary or higher endosymbionts (brown algae, diatoms, Eustigmatophyceae, Pelagophyceae, and Cryptophyta). We performed comparative phylogenetic studies on key XylT subfamilies, and investigated the functional divergence of genes using RNA-Seq. Of the 30 XylTs, one β-1,4-XylT IRX14-related, one β-1,4 XylT IRX10L-related, and one xyloglucan 6-XylT 1-related gene were identified in the Charophyta, showing strong similarities to their land plant descendants. This implied the ancient occurrence of xylan and xyloglucan biosynthetic machineries in Charophyta. The other 27 XylTs were identified as UDP-d-xylose: l-fucose-α-1,3-d-XylT (FucXylT) type that specifically transferred d-xylose to fucose. We propose that FucXylTs originated from the last eukaryotic common ancestor, rather than being plant specific, because they are also distributed in Choanoflagellatea and Echinodermata. Considering the evidence from many aspects, we hypothesize that the FucXylTs likely participated in fucoidan biosynthesis in brown algae. We provide the first insights into the evolutionary history and functional divergence of FucXylT in algal biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  CAS  PubMed  Google Scholar 

  • Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13:41R

    Article  CAS  PubMed  Google Scholar 

  • Berteau O, Mulloy B (2003) Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and an overview of enzymes active toward this class of polysaccharide. Glycobiology 13:29R

    Article  CAS  PubMed  Google Scholar 

  • Bilan MI, Shashkov AS, Usov AI (2014) Structure of a sulfated xylofucan from the brown alga Punctaria plantaginea. Carbohydr Res 393:1–8

    Article  CAS  PubMed  Google Scholar 

  • Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Zeef LA, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR (2009) Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 57:732–746

    Article  CAS  PubMed  Google Scholar 

  • Burki F, Flegontov P, Oborník M, Cihlár J, Pain A, Lukes J, Keeling PJ (2012) Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin. Genome Biol Evol 4:626–635

    Article  CAS  PubMed  Google Scholar 

  • Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008) Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20:1519–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiniquy D et al (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A 109:17117–17122

    Article  PubMed  PubMed Central  Google Scholar 

  • Chou YH, Pogorelko G, Zabotina OA (2012) Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes. Plant Physiol 159:1355–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury JM, Badger JH, Beszteri B, Billiau K, Bonnet E, Bothwell JH, Bowler C, Boyen C, Brownlee C, Carrano CJ, Charrier B, Cho GY, Coelho SM, Collén J, Corre E, da Silva C, Delage L, Delaroque N, Dittami SM, Doulbeau S, Elias M, Farnham G, Gachon CMM, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper FC, Lang D, le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez PJ, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli CA, Nelson DR, Nyvall-Collén P, Peters AF, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing SA, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder DC, Ségurens B, Strittmatter M, Tonon T, Tregear JW, Valentin K, von Dassow P, Yamagishi T, van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat B (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  CAS  PubMed  Google Scholar 

  • Cunha L, Grenha A (2016) Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Marine Drugs:14

  • Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym 175:395–408

    Article  CAS  PubMed  Google Scholar 

  • Ebringerová A, Heinze T (2000) Xylan and xylan derivatives – biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556

    Article  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics (Oxford, England) 14:755–763

    Article  CAS  Google Scholar 

  • Egelund J et al (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egelund J, Damager I, Faber K, Olsen CE, Ulvskov P, Petersen BL (2008) Functional characterisation of a putative rhamnogalacturonan II specific xylosyltransferase. Febs Letters 582:3217–3222

    Article  CAS  PubMed  Google Scholar 

  • Evans LV, Simpson M, Callow ME (1973) Sulphated polysaccharide synthesis in brown algae. Planta 110:237–252

    Article  CAS  PubMed  Google Scholar 

  • Faik A, Price NJ, Raikhel NV, Keegstra K (2002) An Arabidopsis gene encoding an α-xylosyltransferase involved in xyloglucan biosynthesis. Proc Natl Acad Sci 99:7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fangel JU, Petersen BL, Jensen NB, Willats WGT, Bacic A, Egelund J (2011) A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally. Plant J 180:470–479

    CAS  Google Scholar 

  • Götting C, Kuhn J, Zahn R, Brinkmann T, Kleesiek K (2000) Molecular cloning and expression of human UDP-d-Xylose:proteoglycan core protein beta-d-xylosyltransferase and its first isoform XT-II. J Mol Biol 304:517–528

    Article  CAS  PubMed  Google Scholar 

  • Hori K et al (2014) Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5:3978

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Jin J, Guo A-Y, Zhang H, Luo J, Gao G (2014) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikegaya H, Hayashi T, Kaku T, Iwata K, Sonobe S, Shimmen T (2008) Presence of xyloglucan-like polysaccharide in Spirogyra and possible involvement in cell–cell attachment. Phycol Res 56:216–222

    Article  CAS  Google Scholar 

  • Jensen JK, Scheller HV (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30:1236–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PB et al (2009) Assay and heterologous expression inPichia pastorisof plant cell wall type-II membrane anchored glycosyltransferases. Glycoconj J 26:1235–1246

    Article  CAS  Google Scholar 

  • Lee C, Ye ZH (2010) Focus issue on plant cell walls: the Arabidopsis Family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 153:526–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, O'Neill MA, Tsumuraya Y, Darvill AG, Ye ZH (2007) The irregular xylem9 mutant is deficient in xylan xylosyltransferase activity. Plant Cell Physiol 48:1624–1634

    Article  CAS  PubMed  Google Scholar 

  • Lei W, Jing S, Su X, Yu Q, Yu Q, Peng Z (2016) A review about the development of fucoidan in antitumor activity: progress and challenges. Carbohydr Polym 154:96–111

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XL, Liu L, Niu QK, Xia C, Yang KZ, Li R, Chen LQ, Zhang XQ, Zhou Y, Ye D (2011) MALE GAMETOPHYTE DEFECTIVE 4 encodes a rhamnogalacturonan II xylosyltransferase and is important for growth of pollen tubes and roots in Arabidopsis. Plant J 65:647–660

    Article  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda HR, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga T, Ishii T, Matsumoto S, Higuchi M, Darvill A, Albersheim P, O’Neill MA (2004) Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiol 134:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010a) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes. New Phytol 188:82–97

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010b) Central and storage carbon metabolism of the brown alga Ectocarpus siliculosus: insights into the origin and evolution of storage carbohydrates in Eukaryotes. New Phytol 188:67–81

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen MD, Harholt J, Ulvskov P, Johansen IE, Fangel JU, Doblin MS, Bacic A, Willats WGT (2014) Evidence for land plant cell wall biosynthetic mechanisms in charophyte green algae. Ann Bot 114:1217–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira D, Le GH, Philippe H (2000) The origin of red algae and the evolution of chloroplasts. Nature 405:69

    Article  CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Müller S et al (2005) Human xylosyltransferase I: functional and biochemical characterization of cysteine residues required for enzymic activity. Biochem J 386:227–236

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns CF, Fahiminiya S, Poudel N, Munteanu MC, Majewski J, Sillence DO, Metcalf JP, Biggin A, Glorieux F, Fassier F, Rauch F, Hinsdale ME (2015) Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet 96:971–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (2004) The cell walls that bind the tree of life. BioScience 54:831–841

    Article  Google Scholar 

  • Nishitsuji K et al (2016) A draft genome of the brown alga, Cladosiphon okamuranus, S-strain: a platform for future studies of ‘mozuku’ biology. DNA Res 23:dsw039

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2016) Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu Rev Plant Biol 67:235

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA, Tuohy MG (2010) Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol 153:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Y, Hansen SF, Ebert B, Lau J, Scheller HV (2014) Site-directed mutagenesis of IRX9, IRX9L and IRX14 proteins involved in xylan biosynthesis: glycosyltransferase activity is not required for IRX9 function in Arabidopsis. PLoS One, 9,8(2014-8-13) 9:e105014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324

    Article  CAS  Google Scholar 

  • Sethi MK et al (2009) Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated notch EGF repeats. J Biol Chem. https://doi.org/10.1074/jbc.C109.065409

  • Sethi MK et al (2012) Molecular cloning of a xylosyltransferase that transfers the second xylose to O-glucosylated epidermal growth factor repeats of notch. J Biol Chem 287:2739–2748

    Article  CAS  PubMed  Google Scholar 

  • Sievers F et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith J, Yang Y, Levy S, Adelusi OO, Hahn MG, O’Neill MA, Barpeled M (2016) Functional characterization of UDP-apiose synthases from bryophytes and green algae provides insight into the appearance of apiose-containing glycans during plant evolution. J Biol Chem:291

  • Sørensen I, Domozych D, Willats WG (2010) How have plant cell walls evolved. Plant Physiol 153:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoolmiller AC, Horwitz AL, Dorfman A (1972) Biosynthesis of the chondroitin sulfate proteoglycan. Purification and properties of xylosyltransferase. J Biol Chem 247:3525–3532

    CAS  PubMed  Google Scholar 

  • Taujale R, Yin Y (2015) Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae. PLoS One 10:e0128409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng L, Han W, Fan X, Xu D, Zhang X, Dittami SM, Ye N (2017) Evolution and expansion of the prokaryote-like lipoxygenase family in the brown alga Saccharina japonica. Front Plant Sci 8:2018. https://doi.org/10.3389/fpls.2017.02018

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner JE, Mok DW, Mok MC, Shaw G (1987) Isolation and partial purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc Natl Acad Sci U S A 84:3714–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulvskov P (2010) Glycosyltransferases of the GT77 Family. Annu Plant Rev 41:305–320

    Google Scholar 

  • Ulvskov P, Paiva DS, Domozych D, Harholt J (2013) Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. Plos One 8:131–132

    Article  CAS  Google Scholar 

  • Vishchuk OS, Ermakova SP, Zvyagintseva TN (2011) Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: isolation, structural characteristics, and antitumor activity. Carbohydr Res 346:2769–2776

    Article  CAS  PubMed  Google Scholar 

  • Vishchuk OS, Tarbeeva DV, Ermakova SP, Zvyagintseva TN (2012) Structural characteristics and biological activity of Fucoidans from the brown algae Alaria sp. and Saccharina japonica of different reproductive status. Chem Biodivers 9:817

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Tang Q, Zhao X, Jia C, Yang X, He G, Wu A, Kong Y, Hu R, Zhou G (2016) Functional conservation and divergence of Miscanthus lutarioriparius GT43 gene family in xylan biosynthesis. BMC Plant Biol 16:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggins CA, Munro S (1998) Activity of the yeast MNN1 α-1, 3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc Natl Acad Sci 95:7945–7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodniok S, Brinkmann H, Glöckner G, Heidel AJ, Philippe H, Melkonian M, Becker B (2011) Origin of land plants: do conjugating green algae hold the key. BMC Evol Biol 11:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu AM et al (2008) The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. Plant J 57:718

    Article  CAS  PubMed  Google Scholar 

  • Wu A-M, Hörnblad E, Voxeur A, Gerber L, Rihouey C, Lerouge P, Marchant A (2010) Analysis of the Arabidopsis IRX9/IRX9-L and IRX14/IRX14-L pairs of glycosyltransferase genes reveals critical contributions to biosynthesis of the hemicellulose glucuronoxylan. Plant Physiol 153:542–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye N et al (2015) Saccharina genomes provide novel insight into kelp biology. Nat Commun 6:6986

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y (2010) Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Plant Physiol 153:1729–1746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin YB, Mao XZ, Yang JC, Xin C, Mao FL, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:445–451

    Article  CAS  Google Scholar 

  • Zeng W, Lampugnani ER, Picard KL, Song L, Wu AM, Farion IM, Zhao J, Ford K, Doblin MS, Bacic A (2016) Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus. Plant Physiol 171:93–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the national key research and development program of China (2018YFD0900703, 2016YFC1402102, 2018YFD0901503-8), Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (NO. 2018SDKJ0406-3); Financial Fund of the Ministry of Agriculture and Rural Affairs, P. R. of China (NFZX2018). Projects of International Exchange and Cooperation in Agriculture, Ministry of Agriculture and Rural Affairs of China-Science, Technology and Innovation Cooperation in Aquaculture with Tropical Countries along the Belt and Road; Shandong key Research and Development Plan (2018GHY115010); National Natural Science Foundation of China (41676145); China Agriculture Research System (CARS-50); Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (20603022016001, 20603022019006); Taishan Scholars Funding of Shandong Province; Talent Projects of Distinguished Scientific Scholars in Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

N.Y. planned and designed the research. W.H., X.F., and L. T analyzed and interpreted the data for the work. W.H wrote the manuscript. M. J. S. K., X.D., X.Z., and Y. Y. revised it critically for important intellectual content.

Corresponding author

Correspondence to Naihao Ye.

Additional information

Handling Editor: David McCurdy

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supporting file S1

Sequence data of the 30 hits in target genomes (FASTA 18 kb)

Supporting table S1

The numbers of xylosyltransferase subfamily members found in 25 target genomes, including Glaucophyta, Cryptophyta, red algae, green algae, photosynthetic stramenopiles and non-photosynthetic oomycetes. The color indicates the count difference. The 12 xylosyltransferase’ hidden Markov models were downloaded from PANTHER (http://www.pantherdb.org). *Each subfamily belongs to the glycosyltransferase family. ** Only target proteins were counted. (XLSX 23 kb)

Supporting table S2

List of sequences used for phylogenetic analyses and their corresponding accession numbers. (XLSX 38 kb)

Supporting figure s1

Phylogeny of the xylosyltransferase domains of 225 proteins. The multiple sequence alignment of the xylosyltransferase protein domains was performed using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/). The phylogeny was constructed using the MEGA version 7.0 program (Kumar et al. 2016). Different subfamilies and GT families are represented by different colors. Black asterisks (*) denote proteins in our target genomes. (JPG 3218 kb)

Supporting figure S2

Phylogeny of the full-length IRX10L proteins. (JPG 525 kb)

Supporting figure S3

Phylogeny of the full-length IRX14 proteins. (JPG 557 kb)

Supporting figure S4

Phylogeny of the full-length XXT proteins. (JPG 640 kb)

Supporting figure S5

Phylogeny of the full-length FucXylT proteins. (JPG 1308 kb)

Supporting figure S6

Sequence identity and similarity levels among 11 FucXylT proteins. (JPG 345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, W., Fan, X., Teng, L. et al. Identification, classification, and evolution of putative xylosyltransferases from algae. Protoplasma 256, 1119–1132 (2019). https://doi.org/10.1007/s00709-019-01358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-019-01358-2

Keywords

Navigation