Skip to main content
Log in

A revisiting of the elasticity solution for a transversely isotropic functionally graded thick-walled tube based on the Mori–Tanaka method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present the elastic solutions for the problem of an internal pressurized functionally graded thick-walled tube based on the Voigt method in Xin et al. (Int J Mech Sci 89:344–349, 2014); a transversely isotropic functionally graded thick-walled tube subjected to internal pressure is studied. It is assumed that the functionally graded tube is made up of two linear isotropic elastic materials; the matrix is reinforced by fibers with circular cross section all aligned in the circumferential direction. The volume fraction of the reinforced material is identical with our previous work (i.e., Xin et al. in Int J Mech Sci 89:344–349, 2014). By using the Mori–Tanaka method, this paper obtains the differential equation of the radial displacement and then the numerical results of the radial displacement and the stresses are deduced. The approximate analytical solutions are also derived which agree well with the numerical results on the basis of the Mori–Tanaka method. Further, both based on the Mori–Tanaka method, the results received by the present model are compared with those by a particle model for solving an isotropic inner-pressurized FGM tube problem. Finally, in the numerical part the influences of the volume fraction and the elastic moduli’s ratio on radial displacement and the stresses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. IOM Communications, London (1998)

    Google Scholar 

  2. Miyamoto, Y., Kaysser, W.A., Rabin, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials: Design, Processing and Applications. Springer, New York (2013)

    Google Scholar 

  3. Goupee, A.J., Vel, S.S.: Transient multiscale thermoelastic analysis of functionally graded materials. Compos. Struct. 92, 1372–1390 (2010)

    Article  Google Scholar 

  4. Yang, S., Chen, Y.: Wrinkle surface instability of an inhomogeneous elastic block with graded stiffness. Proc. R. Soc. A 473, 20160882 (2017)

    Article  MathSciNet  Google Scholar 

  5. Dai, H.L., Rao, Y.N., Dai, T.: A review of recent researches on FGM cylindrical structures under coupled physical interactions, 2000–2015. Compos. Struct. 152, 199–225 (2016)

    Article  Google Scholar 

  6. Dai, H.L., Luo, W.F., Dai, T., Luo, W.F.: Exact solution of thermoelectroelastic behavior of a fluid-filled FGPM cylindrical thin-shell. Compos. Struct. 162, 411–423 (2017)

    Article  Google Scholar 

  7. Dai, H.L., Qi, Y.N., Luo, W.F.: Investigation on electrothermoelastic behavior of FGPM cylindrical shells. Int. J. Nonlinear Sci. Numer. Simul. 17, 55–64 (2016)

    Article  MathSciNet  Google Scholar 

  8. Mallick, P.K.: Fiber-Reinforced Composites: Materials, Manufacturing, and Design. CRC Press, New York (2007)

    Book  Google Scholar 

  9. Kyriakides, S., Arseculeratne, R., Perry, E.J., Liechti, K.M.: On the compressive failure of fiber reinforced composites. Int. J. Solids Struct. 32, 689–738 (1995)

    Article  MATH  Google Scholar 

  10. Singleton, A.C.N., Baillie, C.A., Beaumont, P.W.R., Peijs, T.: On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos. Part B Eng. 34, 519–526 (2003)

    Article  Google Scholar 

  11. Keller, A.: Compounding and mechanical properties of biodegradable hemp fibre composites. Compos. Sci. Technol. 63, 1307–1316 (2003)

    Article  Google Scholar 

  12. Rana, A.K., Mandal, A., Bandyopadhyay, S.: Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading. Compos. Sci. Technol. 63, 801–806 (2003)

    Article  Google Scholar 

  13. Oksman, K., Skrifvars, M., Selin, J.F.: Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317–1324 (2003)

    Article  Google Scholar 

  14. Barai, P., Weng, G.J.: A theory of plasticity for carbon nanotube reinforced composites. Int. J. Plast. 27, 539–559 (2011)

    Article  MATH  Google Scholar 

  15. Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S.: Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites. Mech. Mater. 58, 1–11 (2013)

    Article  Google Scholar 

  16. Taj, S., Munawar, M.A., Khan, S.: Natural fiber-reinforced polymer composites. Proc. Pak. Acad. Sci. 44, 129 (2007)

    Google Scholar 

  17. Khoathane, M.C., Vorster, O.C., Sadiku, E.R.: Hemp fiber-reinforced 1-pentene/polypropylene copolymer: the effect of fiber loading on the mechanical and thermal characteristics of the composites. J. Reinf. Plast. Compos. 27, 1533–1544 (2008)

    Article  Google Scholar 

  18. Malkapuram, R., Kumar, V., Yuvraj, S.N.: Recent development in natural fibre reinforced polypropylene composites. J. Reinf. Plast. Compos. 28, 1169–1189 (2008)

    Article  Google Scholar 

  19. Nabi Saheb, D., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18, 351–363 (1999)

    Article  Google Scholar 

  20. Wambua, P., Ivens, J., Verpoest, I.: Natural fibres: can they replace glass in fibre reinforced plastics. Compos. Sci. Technol. 63, 1259–1264 (2003)

    Article  Google Scholar 

  21. Xin, L., Dui, G., Yang, S., Zhang, J.: An elasticity solution for functionally graded thick-walled tube subjected to internal pressure. Int. J. Mech. Sci. 89, 344–349 (2014)

    Article  Google Scholar 

  22. Xin, L., Dui, G., Yang, S., Zhou, D.: Solutions for behavior of a functionally graded thick-walled tube subjected to mechanical and thermal loads. Int. J. Mech. Sci. 98, 70–79 (2015)

    Article  Google Scholar 

  23. You, L.H., Zhang, J.J., You, X.Y.: Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int. J. Press. Vessels Pip. 82, 347–354 (2005)

    Article  Google Scholar 

  24. Tutuncu, N., Ozturk, M.: Exact solutions for stresses in functionally graded pressure vessels. Compos. Part B Eng. 32, 683–686 (2001)

    Article  Google Scholar 

  25. Shi, Z.F., Zhang, T.T., Xiang, H.J.: Exact solutions of heterogeneous elastic hollow cylinders. Compos. Struct. 79, 140–147 (2007)

    Article  Google Scholar 

  26. Hosseini, S.M., Akhlaghi, M.: Analytical solution in transient thermo-elasticity of functionally graded thick hollow cylinders (Pseudo-dynamic analysis). Math. Methods Appl. Sci. 32, 2019–2034 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ozturk, A., Gulgec, M.: Elastic–plastic stress analysis in a long functionally graded solid cylinder with fixed ends subjected to uniform heat generation. Int. J. Eng. Sci. 49, 1047–1061 (2011)

    Article  Google Scholar 

  28. Sburlati, R.: Analytical elastic solutions for pressurized hollow cylinders with internal functionally graded coatings. Compos. Struct. 94, 3592–3600 (2012)

    Article  Google Scholar 

  29. Chen, Y.Z., Lin, X.Y.: Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Comput. Mater. Sci. 44, 581–587 (2008)

    Article  Google Scholar 

  30. Eraslan, N.A., Akis, T.: Elastoplastic response of a long functionally graded tube subjected to internal pressure. Turk. J. Eng. Environ. Sci. 29, 361–368 (2005)

    Google Scholar 

  31. Chen, Y.Z., Lin, X.Y.: An alternative numerical solution of thick-walled cylinders and spheres made of functionally graded materials. Comput. Mater. Sci. 48, 640–647 (2010)

    Article  Google Scholar 

  32. Durodola, J.F., Attia, O.: Deformation and stresses in functionally graded rotating disks. Compos. Sci. Technol. 60, 987–995 (2000)

    Article  Google Scholar 

  33. Dai, H.L., Jiang, H.J.: Magnetothermoelastic bending analysis of a functionally graded material cylindrical shell. Mech. Adv. Mater. Struct. 22, 281–289 (2015)

    Article  Google Scholar 

  34. Tarn, J.Q.: Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. Int. J. Solids Struct. 38, 8189–8206 (2001)

    Article  MATH  Google Scholar 

  35. Chen, J., Ding, H., Chen, W.: Three-dimensional analytical solution for a rotating disc of functionally graded materials with transverse isotropy. Arch. Appl. Mech. 77, 241–251 (2007)

    Article  MATH  Google Scholar 

  36. Li, X.Y., Ding, H.J., Chen, W.Q.: Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk. Int. J. Solids Struct. 45, 191–210 (2008)

    Article  MATH  Google Scholar 

  37. Xin, L., Lu, W., Yang, S., Ju, C., Dui, G.: Influence of linear work hardening on the elastic–plastic behavior of a functionally graded thick-walled tube. Acta Mech. 227, 2305–2321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xin, L., Yang, S., Zhou, D., Dui, G.: An approximate analytical solution based on the Mori–Tanaka method for functionally graded thick-walled tube subjected to internal pressure. Compos. Struct. 135, 74–82 (2016)

    Article  Google Scholar 

  39. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  40. Qu, J.M., Cherkaoui, M.: Fundamentals of Micromechanics of Solids. Wiley, New Jersey (2006)

    Book  Google Scholar 

  41. Li, S., Gao, X.L.: Handbook of Micromechanics and Nanomechanics. CRC Press, Singapore (2013)

    Book  Google Scholar 

  42. Li, S., Wang, G.: Introduction to Micromechanics and Nanomechanics. World Scientific Publishing Co. Pte. Ltd., New Jersey (2008)

    Book  MATH  Google Scholar 

  43. Hill, H.: Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 13, 89–101 (1965)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libiao Xin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, L., Dui, G., Pan, D. et al. A revisiting of the elasticity solution for a transversely isotropic functionally graded thick-walled tube based on the Mori–Tanaka method. Acta Mech 229, 2703–2717 (2018). https://doi.org/10.1007/s00707-018-2126-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2126-2

Navigation