Skip to main content
Log in

On the nonlinear dynamics of shift gearbox models

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

When the so-called eek effect emerges while shifting a vehicle shift gearbox, car drivers perceive audible noise and vibrations of drivetrain components. Some physical approaches have been provided in order to explain the effect as well as to search for countermeasures. In Jehle and Fidlin (ZAMM J Appl Math Mech 94(11):911–916 (2014), the interaction of sliding clutch disk and gears is addressed in a rigid body model. The clutch disk’s non-conservative follower forces in combination with geometric coupling in gears imply the action of non-symmetric restoring- and velocity-proportional forces. The desired motion of gearbox components can therefore undergo a mode-coupling flutter instability, out of which vibrations emerge with exponentially growing amplitudes. As the contacts in clutch and gears hold non-smooth transitions such as the possibility of sticking and opening, dynamic solutions are both limited and complex. In this contribution, first of all model details concerning the gear formulation are revised: rigid and viscoelastic normal contact are compared, which imply differences in the nature of the solution and method of stability analysis. Nevertheless the two approaches are shown to converge. Finally, the dynamics behind the loss of stability of the desired motion is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jehle, G., Fidlin, A.: Friction induced vibrations in shift gearboxes. ZAMM J. Appl. Math. Mech. /Zeitschrift für Angewandte Mathematik und Mechanik. 94(11), 911–916 (2014)

    Article  MathSciNet  Google Scholar 

  2. Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Dissertation. Karlsruher Institut für Technologie (2008)

  3. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. Appl. Mech. Rev. 47(7), 227–253 (1994)

    Article  Google Scholar 

  4. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)

    Article  Google Scholar 

  5. Centea, D., Rahnejat, H., Menday, M.T.: Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder). Appl. Math. Model. 25(3), 177–192 (2001)

    Article  MATH  Google Scholar 

  6. Drexl, H.J.: Clutch judder: causes and countermeasures. In: Proceedings of Technical Conference SITEV; Vol. 90, pp. 7–46 (1990)

  7. Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998)

    Article  Google Scholar 

  8. Kauderer, H.: Nichtlineare Mechanik. Springer, Berlin (1958)

    Book  MATH  Google Scholar 

  9. Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)

    Article  MATH  Google Scholar 

  10. Fidlin, A., Drozdetskaya, O., Waltersberger, B.: On the minimal model for the low frequency wobbling instability of friction discs. Eur. J. Mech. A Solids 30(5), 665–672 (2011)

    Article  MATH  Google Scholar 

  11. Hervé, B., Sinou, J.J., Mahé, H., Jezequel, L.: Analysis of squeal noise and mode coupling instabilities including damping and gyroscopic effects. Eur. J. Mech. A Solids 27(2), 141–160 (2008)

    Article  MATH  Google Scholar 

  12. Senatore, A., Hochlenert, D., d’Agostino, V., von Wagner, U.: Driveline dynamics simulation and analysis of the dry clutch friction-induced vibrations in the eek frequency range. In: ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2013)

  13. Wickramarachi, P., Singh, R., Bailey, G.: Analysis of friction-induced vibration leading to ”eek” noise in a dry friction clutch. Noise Control Eng. J. 53(4), 138–144 (2005)

    Article  Google Scholar 

  14. Vahid-Araghi, O., Golnaraghi, F.: Friction-Induced Vibration in Lead Screw Drives. Springer, Berlin (2010)

    MATH  Google Scholar 

  15. Lorang, X., Foy-Margiocchi, F., Nguyen, Q., Gautier, P.E.: TGV disc brake squeal. J. Sound Vib. 293(3), 735–746 (2006)

    Article  MATH  Google Scholar 

  16. Fidlin, A., Stamm, W.: On the radial dynamics of friction disks. Eur. J. Mech. A Solids 28(3), 526–534 (2009)

    Article  MATH  Google Scholar 

  17. Willner, K.: Kontinuums- und Kontaktmechanik: Synthetische und analytische Darstellung. Springer, Berlin (2013)

    Google Scholar 

  18. Caps, H., Dorbolo, S., Ponte, S., Croisier, H., Vandewalle, N.: Rolling and slipping motion of Euler’s disk. Phys. Rev. E 69(5), 056610 (2004)

    Article  MathSciNet  Google Scholar 

  19. Vielsack, P.: Regularisierung des Haftzustandes bei Coulombscher Reibung. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik. 76(8), 439–446 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krylov, V.: Approximate Calculation of Integrals. The MacMillan Company, New York (1962)

    MATH  Google Scholar 

  21. Jehle, G.: Zur Modellbildung und Simulation reibungserregter Schwingungen in Pkw-Schaltgetrieben. Dissertation. Karlsruher Institut für Technologie (2016)

  22. Küçükay, F.: Dynamik der Zahnradgetriebe: Modelle, Verfahren, Verhalten. Springer, Berlin (1987)

    Book  Google Scholar 

  23. Litvin, F.: Gear Geometry and Applied Theory. PTR Prentice Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  24. Klement, W.: Fahrzeuggetriebe. Carl Hanser Verlag München (2011)

  25. Deppler, J., Braun, B., Fidlin, A., Hochbruck, M.: Convergence of viscoelastic constraints to nonholonomic idealization. Eur. J. Mech. A Solids 58, 140–147 (2016)

    Article  MathSciNet  Google Scholar 

  26. Hagedorn, P., Stadler, W.: Non-linear Oscillations. Oxford University Press, Oxford (1988)

    Google Scholar 

  27. Debrabant, K.: Numerische Behandlung linearer und semilinearer partieller differentiell-algebraischer Systeme mit Runge-Kutta-Methoden. Dissertation. Martin-Luther-Universität Halle-Wittenberg (2004)

  28. Gantmacher, F., Hirsch, K.: The Theory of Matrices (English Translation), vol. 2. Chelsea Publishing Co., Chapman & Hall (2000)

  29. Dresig, H., Fidlin, A.: Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Springer, Berlin (2014)

    Book  Google Scholar 

  30. Dresig, H., Holzweißig, F.: Maschinendynamik. Springer, Berlin (2009)

    Google Scholar 

  31. Molerus, O.: Laufunruhige Drehzahlbereiche mehrstufiger Stirnradgetriebe. Dissertation. Technische Hochschule Karlsruhe (1963)

  32. Nayfeh, A., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jehle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jehle, G., Fidlin, A. On the nonlinear dynamics of shift gearbox models. Acta Mech 229, 2327–2341 (2018). https://doi.org/10.1007/s00707-018-2110-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2110-x

Navigation