Archives of Virology

, Volume 164, Issue 1, pp 127–136 | Cite as

Development and comparison of two H5N8 influenza A vaccine candidate strains

  • Mi-Seon Lee
  • Eun Young Jang
  • Junhyung Cho
  • Kisoon Kim
  • Chan Hee Lee
  • Hwajung YiEmail author
Original Article


Avian influenza viruses circulating in birds have caused outbreaks of infection in poultry and humans, thereby threatening public health. Recently, a highly pathogenic avian influenza (HPAI) virus (H5N8) of clade emerged in Korea and other countries and caused multiple outbreaks in domestic and wild birds, with concerns for human infection. To combat HPAI viral infections, novel vaccines are likely to be the most effective approach. Therefore, in this study, we generated H5N8 vaccine candidate viruses based on a Korean isolate (A/broiler duck/Korea/Buan2/2014). The vaccine candidate viruses were 2:6 reassortants expressing the two surface glycoproteins of A/broiler duck/Korea/Buan2/2014 on an A/Puerto Rico/8/34 (PR8) backbone generated by using an eight-plasmid-based reverse genetics system with or without replacement of the multi-basic amino acid cleavage motif (MBCM, a crucial pathogenic factor in HPAI virus) with a bi-basic amino acid cleavage motif (BBCM) in their HA. An H5N8 vaccine candidate virus containing the BBCM showed attenuated pathogenesis in embryonated eggs and exhibited less virulence in the infected mice compared with the wild H5N8 virus containing an MBCM. Vaccination with an inactivated preparation of the vaccine candidate virus protected mice from lethal H5N8 viral challenge. This is the first report of the development and evaluation of H5N8 vaccine strains (with an MBCM or BBCM) of HA clade as vaccine candidates. Our findings suggest that H5N8 strains with a BBCM instead of an MBCM might be considered for H5N8 vaccine seed virus development or as a reference vaccine against H5N8 viral strains.



Bi-basic amino acid cleavage motif




Hemagglutination inhibition


Hours postinfection


Multi-basic amino acid cleavage motif


Madin-Darby canine kidney


50% murine infectious dose


50% murine lethal dose




Phosphate-buffered saline


A/Puerto Rico/8/34


Red blood cells




Tissue culture infectious dose



The two Korean H5N8 isolates (A/broiler duck/Korea/Buan2/ 2014 and A/breeder duck/Korea/Gochang1/2014) were kindly provided by the Avian Disease Division of the Animal and Plant Quarantine Agency (QIA) of South Korea. The vector plasmid pHW2000 was kindly provided by Robert Webster, St. Jude Children’s Research Hospital, Memphis, TN, USA.

Compliance with ethical standards


This research was supported by a fund (grant number 2014-NI43003-00) by Research of Korea Centers for Disease Control and Prevention.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments were authorized by the Institutional Animal Care and Use Committee of the Korea Centers for Disease Prevention and Control (approved numbers: KCDC-168-14-2A) and all experiments were performed according to the guidelines of this committee.


  1. 1.
    Claes F, Morzaria SP, Donis RO (2016) Emergence and dissemination of clade H5Nx influenza viruses—how is the Asian HPAI H5 lineage maintained. Curr Opin Virol 16:158–163. CrossRefPubMedGoogle Scholar
  2. 2.
    Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252(2):331–342. CrossRefPubMedGoogle Scholar
  3. 3.
    Poovorawan Y, Pyungporn S, Prachayangprecha S, Makkoch J (2013) Global alert to avian influenza virus infection: from H5N1 to H7N9. Pathog Glob Health 107(5):217–223. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Swayne D, Suarez D (2000) Highly pathogenic avian influenza. Rev Sci Tech 19(2):463–475CrossRefPubMedGoogle Scholar
  5. 5.
    WHO (2017) Cumulative number of confirmed human cases of avian influenza A (H5N1) reported to WHO, 2003-2017.
  6. 6.
    Zhao K, Gu M, Zhong L, Duan Z, Zhang Y, Zhu Y, Zhao G, Zhao M, Chen Z, Hu S, Liu W, Liu X, Peng D, Liu X (2013) Characterization of three H5N5 and one H5N8 highly pathogenic avian influenza viruses in China. Vet Microbiol 163(3):351–357. CrossRefPubMedGoogle Scholar
  7. 7.
    Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, Xie T, Yao H, Wu N (2014) Novel reassortant influenza A(H5N8) viruses in domestic ducks, Eastern China. Emerg Infect Dis 20(8):1315–1318. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jhung MA, Nelson DI, Control CfD, Prevention (2015) Outbreaks of avian influenza A (H5N2),(H5N8), and (H5N1) among birds—United States, December 2014–January 2015. MMWR Morb Mortal Wkly Rep 64(4):111PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lee D-H, Torchetti MK, Winker K, Ip HS, Song C-S, Swayne DE (2015) Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J Virol 89(12):6521–6524. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee Y-J, Kang H-M, Lee E-K, Song B-M, Jeong J, Kwon Y-K, Kim H-R, Lee K-J, Hong M-S, Jang I, Choi K-S, Kim J-Y, Lee H-J, Kang M-S, Jeong O-M, Baek J-H, Joo Y-S, Park YH, Lee H-S (2014) Novel reassortant influenza A (H5N8) viruses, South Korea. Emerg Infect Dis 20(6):1087–1089. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Si Y-J, Choi WS, Kim Y-I, Lee I-W, Kwon H-I, Park S-J, Kim E-H, Sm Kim, Kwon J-J, Song M-S, Kim C-J, Choi Y-K (2016) Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015. Arch Virol 161(10):2749–2764. CrossRefPubMedGoogle Scholar
  12. 12.
  13. 13.
    Woo CKJ-H, Kwon JH, Lee D-H, Kim Y, Lee K, Jo S-D, Son KD, Oem J-K, Wang S-J, Kim Y, Shin J, Song C-S, Jheong W, Jeong J (2017) Novel reassortant. Arch Virol. 162(12):3887. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Shortridge KF (1995) The next pandemic influenza virus? Lancet 346(8984):1210–1212. CrossRefPubMedGoogle Scholar
  15. 15.
    Webster RG, Peiris M, Chen H, Guan Y (2006) H5N1 outbreaks and enzootic influenza. Biodiversity 7(1):51–55. CrossRefGoogle Scholar
  16. 16.
    To KKW, Ng KHL, Que T-L, Chan JMC, Tsang K-Y, Tsang AKL, Chen H, Yuen K-Y (2012) Avian influenza A H5N1 virus: a continuous threat to humans. Emerg Microbes Infect 1:e25. PubMedPubMedCentralGoogle Scholar
  17. 17.
    Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, Meijer A, van Steenbergen J, Fouchier R, Osterhaus A, Bosman A (2004) Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363(9409):587–593. CrossRefPubMedGoogle Scholar
  18. 18.
    Ostrowsky B, Huang A, Terry W, Anton D, Brunagel B, Traynor L, Abid S, Johnson G, Kacica M, Katz J, Edwards L, Lindstrom S, Klimov A (2003) Uyeki TM (2012) Uyeki TM (2012) Low pathogenic avian influenza A (H7N2) virus infection in immunocompromised adult, New York, USA. Emerg Infect Dis 18(7):1128–1131. CrossRefGoogle Scholar
  19. 19.
    Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, Li Y, Katz J, Krajden M, Tellier R, Halpert C, Hirst M, Astell C, Lawrence D, Mak A (2004) Human Illness from Avian Influenza H7N3, British Columbia. Emerg Infect Dis 10(12):2196–2199. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Arzey GG, Kirkland PD, Arzey KE, Frost M, Maywood P, Conaty S, Hurt AC, Deng Y-M, Iannello P, Barr I, Dwyer DE, Ratnamohan M, McPhie K, Selleck P (2012) Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia. Emerg Infect Dis 18(5):814–816. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Jong J, Claas E, Osterhaus A, Webster R, Lim W (1997) A pandemic warning? Nature 389(6651):554. CrossRefPubMedGoogle Scholar
  22. 22.
    Campbell PJ, Danzy S, Kyriakis CS, Deymier MJ, Lowen AC, Steel J (2014) The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J Virol 88(7):3802–3814. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matsuoka Y, Chen H, Cox N, Subbarao K, Beck J, Swayne D (2003) Safety evaluation in chickens of candidate human vaccines against potential pandemic strains of influenza. Avian Dis 47(s3):926–930. CrossRefPubMedGoogle Scholar
  24. 24.
    Rodriguez A, Pérez-González A, Hossain MJ, Chen L-M, Rolling T, Pérez-Breña P, Donis R, Kochs G, Nieto A (2009) Attenuated strains of influenza A viruses do not induce degradation of RNA polymerase II. J Virol 83(21):11166–11174. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Senne D, Panigrahy B, Kawaoka Y, Pearson J, Süss J, Lipkind M, Kida H, Webster R (1996) Survey of the hemagglutinin (HA) cleavage site sequence of H5 and H7 avian influenza viruses: amino acid sequence at the HA cleavage site as a marker of pathogenicity potential. Avian Dis 40(2):425–437. CrossRefPubMedGoogle Scholar
  26. 26.
    Alexander DJ (2007) An overview of the epidemiology of avian influenza. Vaccine 25(30):5637–5644. CrossRefPubMedGoogle Scholar
  27. 27.
    Hoffmann E, Krauss S, Perez D, Webby R, Webster RG (2002) Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20(25):3165–3170. CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffmann E, Stech J, Guan Y, Webster R, Perez D (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146(12):2275–2289. CrossRefPubMedGoogle Scholar
  29. 29.
    Subbarao K, Chen H, Swayne D, Mingay L, Fodor E, Brownlee G, Xu X, Lu X, Katz J, Cox N, Matsuoka Y (2003) Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine candidate generated by plasmid-based reverse genetics. Virology 305(1):192–200. CrossRefPubMedGoogle Scholar
  30. 30.
    Wohlbold TJ, Hirsh A, Krammer F (2015) An H10N8 influenza virus vaccine strain and mouse challenge model based on the human isolate A/Jiangxi-Donghu/346/13. Vaccine 33(9):1102–1106. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27(3):493–497. CrossRefGoogle Scholar
  32. 32.
    Palmer DF, Dowdle WR, Coleman MT, Schild GC (1975) Hemagglutination-inhibition test. In: Advanced laboratory techniques for influenza diagnosis: procedural guide. U.S. Department of Health, Education and Welfare, Atlanta, GA, pp 25–62Google Scholar
  33. 33.
    Grund S, Adams O, Wählisch S, Schweiger B (2011) Comparison of hemagglutination inhibition assay, an ELISA-based micro-neutralization assay and colorimetric microneutralization assay to detect antibody responses to vaccination against influenza A H1N1 2009 virus. J Virol Methods 171(2):369–373. CrossRefPubMedGoogle Scholar
  34. 34.
    Kim HM, Kim C-K, Lee N-J, Chu H, Kang C, Kim K, Lee J-Y (2015) Pathogenesis of novel reassortant avian influenza virus A (H5N8) Isolates in the ferret. Virology 481:136–141. CrossRefPubMedGoogle Scholar
  35. 35.
    Verhagen JH, Herfst S, Fouchier RA (2015) How a virus travels the world. Science 347(6222):616–617. CrossRefPubMedGoogle Scholar
  36. 36.
    Arriola CS, Nelson DI, Deliberto TJ, Blanton L, Kniss K, Levine MZ, Trock SC, Finelli L, Jhung MA, the HIG (2015) Infection risk for persons exposed to highly pathogenic avian influenza A H5 virus-infected birds, United States, December 2014–March 2015. Emerg Infect Dis 21(12):2135–2140. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pan M, Gao R, Lv Q, Huang S, Zhou Z, Yang L, Li X, Zhao X, Zou X, Tong W, Mao S, Zou S, Bo H, Zhu X, Liu L, Yuan H, Zhang M, Wang D, Li Z, Zhao W, Ma M, Li Y, Li T, Yang H, Xu J, Zhou L, Zhou X, Tang W, Song Y, Chen T, Bai T, Zhou J, Wang D, Wu G, Li D, Feng Z, Gao GF, Wang Y, He S, Shu Y (2016) Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: virological and clinical findings. J Infect 72(1):52–59. CrossRefPubMedGoogle Scholar
  38. 38.
    Chen T, Zhang R (2015) Symptoms seem to be mild in children infected with avian influenza A (H5N6) and other subtypes. J Infect 71(6):702–703. CrossRefPubMedGoogle Scholar
  39. 39.
    Neumann G, Watanabe T, Ito H, Watanabe S, Goto H, Gao P, Hughes M, Perez DR, Donis R, Hoffmann E (1999) Generation of influenza A viruses entirely from cloned cDNAs. PNAS 96(16):9345–9350. CrossRefPubMedGoogle Scholar
  40. 40.
    Bogs J, Veits J, Gohrbandt S, Hundt J, Stech O, Breithaupt A, Teifke JP, Mettenleiter TC, Stech J (2010) Highly pathogenic H5N1 influenza viruses carry virulence determinants beyond the polybasic hemagglutinin cleavage site. PLoS One 5(7):e11826. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li S, Liu C, Klimov A, Subbarao K, Perdue ML, Mo D, Ji Y, Woods L, Hietala S, Bryant M (1999) Recombinant influenza a virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. J Infect Dis 179(5):1132–1138. CrossRefPubMedGoogle Scholar
  42. 42.
    Suguitan AL Jr, McAuliffe J, Mills KL, Jin H, Duke G, Lu B, Luke CJ, Murphy B, Swayne DE, Kemble G (2006) Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. PLoS Med 3(9):e360. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lin J, Zhang J, Dong X, Fang H, Chen J, Su N, Gao Q, Zhang Z, Liu Y, Wang Z, Yang M, Sun R, Li C, Lin S, Ji M, Liu Y, Wang X, Wood J, Feng Z, Wang Y, Yin W (2006) Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1) vaccine: a phase I randomised controlled trial. Lancet 368(9540):991–997. CrossRefPubMedGoogle Scholar
  44. 44.
    Bresson J-L, Perronne C, Launay O, Gerdil C, Saville M, Wood J, Höschler K, Zambon MC (2006) Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase I randomised trial. Lancet 367(9523):1657–1664. CrossRefPubMedGoogle Scholar
  45. 45.
    Ehrlich HJ, Müller M, Oh HM, Tambyah PA, Joukhadar C, Montomoli E, Fisher D, Berezuk G, Fritsch S, Löw-Baselli A (2008) A clinical trial of a whole-virus H5N1 vaccine derived from cell culture. N Engl J Med 358(24):2573–2584. CrossRefPubMedGoogle Scholar
  46. 46.
    Cox RJ, Pedersen G, Madhun AS, Svindland S, Sævik M, Breakwell L, Hoschler K, Willemsen M, Campitelli L, Nøstbakken JK, Weverling GJ, Klap J, McCullough KC, Zambon M, Kompier R, Sjursen H (2011) Evaluation of a virosomal H5N1 vaccine formulated with Matrix M™ adjuvant in a phase I clinical trial. Vaccine 29(45):8049–8059. CrossRefPubMedGoogle Scholar
  47. 47.
    Geeraedts F, Goutagny N, Hornung V, Severa M, de Haan A, Pool J, Wilschut J, Fitzgerald KA, Huckriede A (2008) Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog 4(8):e1000138. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Prabakaran M, Velumani S, He F, Karuppannan AK, Geng GY, Yin LK, Kwang J (2008) Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant. Virology 380(2):412–420. CrossRefPubMedGoogle Scholar
  49. 49.
    Couch RB, Decker WK, Utama B, Atmar RL, Niño D, Feng JQ, Halpert MM, Air GM (2012) Evaluations for in vitro correlates of immunogenicity of inactivated influenza a H5, H7 and H9 vaccines in humans. PLoS One 7(12):e50830. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    De Groot AS, Ardito M, Terry F, Levitz L, Ross T, Moise L, Martin W (2013) Low immunogenicity predicted for emerging avian-origin H7N9: implication for influenza vaccine design. Hum Vaccine Immunother 9(5):950–956. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Mi-Seon Lee
    • 1
    • 2
  • Eun Young Jang
    • 1
    • 3
  • Junhyung Cho
    • 1
    • 3
  • Kisoon Kim
    • 1
  • Chan Hee Lee
    • 3
  • Hwajung Yi
    • 1
    Email author
  1. 1.Division of Viral Disease Research, Center for Infectious Diseases Research, Korea National Institute of HealthKorea Centers for Disease Control and PreventionCheongju-siKorea
  2. 2.Department of Life Science and TechnologyPai Chai UniversityDaejeonKorea
  3. 3.Department of MicrobiologyChungbuk National UniversityCheongjuKorea

Personalised recommendations