Archives of Virology

, Volume 164, Issue 1, pp 3–16 | Cite as

The fecal virome of red-crowned cranes

  • Yan Wang
  • Shixing Yang
  • Dawei Liu
  • Chenglin Zhou
  • Wang Li
  • Yuan Lin
  • Xiaochun Wang
  • Quan Shen
  • Hua Wang
  • Chuang Li
  • Minghui Zong
  • Yuzhu Ding
  • Qianben Song
  • Xutao Deng
  • Dunwu Qi
  • Wen ZhangEmail author
  • Eric Delwart
Original Article


The red-crowned crane is one of the rarest crane species, and its population is decreasing due to loss of habitat, poisoning, and infections. Using a viral metagenomics approach, we analyzed the virome of feces from wild and captive red-crowned cranes, which were pooled separately. Vertebrate viruses belonging to the families Picornaviridae, Parvoviridae, Circoviridae, and Caliciviridae were detected. Among the members of the family Picornaviridae, we found three that appear to represent new genera. Six nearly complete genomes from members of the family Parvoviridae were also obtained, including four new members of the proposed genus “Chapparvovirus”, and two members of the genus Aveparvovirus. Six small circular DNA genomes were also characterized. One nearly complete genome showing a low level of sequence identity to caliciviruses was also characterized. Numerous viruses believed to infect insects, plants, and crustaceans were also identified, which were probably derived from the diet of red-crowned cranes. This study increases our understanding of the enteric virome of red-crowned cranes and provides a baseline for comparison to those of other birds or following disease outbreaks.



This work was partly supported by National Key Research and Development Programs of China No. 2017YFC1200201, National Natural Science Foundation of China No. 81741062, Jiangsu Provincial Key Research and Development Projects No. BE2017693, the Professional Research Foundation for Advanced Talents of Jiangsu University No. 12JDG085 and 13JDG087, the Postdoctoral Foundation of Jiangsu Province No. 1302057C and 1302058C, China Postdoctoral Foundation No. 2014M561597.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study did not include experiments with human participants or animals performed by any of the authors.

Supplementary material

705_2018_4037_MOESM1_ESM.pdf (505 kb)
Supplementary material 1 (PDF 504 kb)


  1. 1.
    Wang H, Gao J, Pu R, Ren L, Kong Y, Li H, Li L (2014) Natural and anthropogenic influences on a red-crowned crane habitat in the Yellow River Delta Natural Reserve, 1992–2008. Environ Monit Assess 186:4013–4028CrossRefPubMedGoogle Scholar
  2. 2.
    Liu DW, Liu HY, Zhang HB, Cao MC, Sun Y, Wu WD, Lu CH (2016) Potential natural exposure of endangered red-crowned crane (Grus japonensis) to mycotoxins aflatoxin B1, deoxynivalenol, zearalenone, T-2 toxin, and ochratoxin A. J Zhejiang Univ Sci B 17:158–168CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Luo J, Ye Y, Gao Z, Wang W, Hartup BK (2016) Lead in the Red-Crowned Cranes (Grus japonensis) in Zhalong Wetland, Northeastern China: a report. Bull Environ Contam Toxicol 97:177–183CrossRefPubMedGoogle Scholar
  4. 4.
    Xie Y, Xia P, Wang H, Yu H, Giesy JP, Zhang Y, Mora MA, Zhang X (2016) Effects of captivity and artificial breeding on microbiota in feces of the red-crowned crane (Grus japonensis). Sci Rep 6:33350CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lian X, Ming X, Xu J, Cheng W, Zhang X, Chen H, Ding C, Jung YS, Qian Y (2018) First molecular detection and characterization of Marek’s disease virus in red-crowned cranes (Grus japonensis): a case report. BMC Vet Res 14:122CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Delwart EL (2007) Viral metagenomics. Rev Med Virol 17:115–131CrossRefPubMedGoogle Scholar
  7. 7.
    Yang S, Wang Y, Li W, Fan Z, Jiang L, Lin Y, Fu X, Shen Q, Sun Z, Wang X, Deng X, Zhang W, Delwart E (2016) A novel bocavirus from domestic mink, China. Virus Genes 52:887–890CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang W, Li L, Deng X, Blumel J, Nubling CM, Hunfeld A, Baylis SA, Delwart E (2016) Viral nucleic acids in human plasma pools. Transfusion 56:2248–2255CrossRefPubMedGoogle Scholar
  9. 9.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2015) Erratum: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 4:30CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, Delwart EL (2015) An ensemble strategy that significantly improves de novo assembly of microbial genomes from metagenomic next-generation sequencing data. Nucleic Acids Res 43:e46CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cotmore SF, Agbandje-McKenna M, Chiorini JA, Mukha DV, Pintel DJ, Qiu J, Soderlund-Venermo M, Tattersall P, Tijssen P, Gatherer D, Davison AJ (2014) The family Parvoviridae. Arch Virol 159:1239–1247CrossRefPubMedGoogle Scholar
  14. 14.
    Phan TG, Gulland F, Simeone C, Deng X, Delwart E (2015) Sesavirus: prototype of a new parvovirus genus in feces of a sea lion. Virus Genes 50:134–136CrossRefPubMedGoogle Scholar
  15. 15.
    Koo BS, Lee HR, Jeon EO, Han MS, Min KC, Lee SB, Mo IP (2013) Molecular survey of enteric viruses in commercial chicken farms in Korea with a history of enteritis. Poult Sci 92:2876–2885CrossRefPubMedGoogle Scholar
  16. 16.
    Da Silva SE, Bonetti AM, Petrocelli AT, Ferrari HF, Luvizotto MC, Cardoso TC (2008) Detection of Turkey astrovirus in young poults affected with poult enteritis complex in Brazil. J Vet Med Sci 70:629–631CrossRefPubMedGoogle Scholar
  17. 17.
    McNulty MS, Allan GM, Todd D, McFerran JB (1979) Isolation and cell culture propagation of rotaviruses from turkeys and chickens. Arch Virol 61:13–21CrossRefPubMedGoogle Scholar
  18. 18.
    Spackman E, Kapczynski D, Sellers H (2005) Multiplex real-time reverse transcription-polymerase chain reaction for the detection of three viruses associated with poult enteritis complex: turkey astrovirus, turkey coronavirus, and turkey reovirus. Avian Dis 49:86–91CrossRefPubMedGoogle Scholar
  19. 19.
    Day JM, Zsak L (2010) Determination and analysis of the full-length chicken parvovirus genome. Virology 399:59–64CrossRefPubMedGoogle Scholar
  20. 20.
    Krupovic M, Ghabrial SA, Jiang D, Varsani A (2016) Genomoviridae: a new family of widespread single-stranded DNA viruses. Arch Virol 161:2633–2643CrossRefPubMedGoogle Scholar
  21. 21.
    Rosario K, Marinov M, Stainton D, Kraberger S, Wiltshire EJ, Collings DA, Walters M, Martin DP, Breitbart M, Varsani A (2011) Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 92:1302–1308CrossRefPubMedGoogle Scholar
  22. 22.
    Li L, Kapoor A, Slikas B, Bamidele OS, Wang C, Shaukat S, Masroor MA, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682CrossRefPubMedGoogle Scholar
  23. 23.
    Kraberger S, Arguello-Astorga GR, Greenfield LG, Galilee C, Law D, Martin DP, Varsani A (2015) Characterisation of a diverse range of circular replication-associated protein encoding DNA viruses recovered from a sewage treatment oxidation pond. Infect Genet Evolut 31:73–86CrossRefGoogle Scholar
  24. 24.
    Du Z, Tang Y, Zhang S, She X, Lan G, Varsani A, He Z (2014) Identification and molecular characterization of a single-stranded circular DNA virus with similarities to Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1. Arch Virol 159:1527–1531CrossRefPubMedGoogle Scholar
  25. 25.
    Sikorski A, Massaro M, Kraberger S, Young LM, Smalley D, Martin DP, Varsani A (2013) Novel myco-like DNA viruses discovered in the faecal matter of various animals. Virus Res 177:209–216CrossRefPubMedGoogle Scholar
  26. 26.
    Li L, Shan T, Soji OB, Alam MM, Kunz TH, Zaidi SZ, Delwart E (2011) Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 92:768–772CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Todd D, Scott AN, Fringuelli E, Shivraprasad HL, Gavier-Widen D, Smyth JA (2007) Molecular characterization of novel circoviruses from finch and gull. Avian Pathol 36:75–81CrossRefPubMedGoogle Scholar
  28. 28.
    Decaro N, Martella V, Desario C, Lanave G, Circella E, Cavalli A, Elia G, Camero M, Buonavoglia C (2014) Genomic characterization of a circovirus associated with fatal hemorrhagic enteritis in dog, Italy. PloS One 9:e105909CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lian H, Liu Y, Li N, Wang Y, Zhang S, Hu R (2014) Novel circovirus from mink, China. Emerg Infect Dis 20:1548–1550CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gagnon CA, Music N, Fontaine G, Tremblay D, Harel J (2010) Emergence of a new type of porcine circovirus in swine (PCV): a type 1 and type 2 PCV recombinant. Vet Microbiol 144:18–23CrossRefPubMedGoogle Scholar
  31. 31.
    Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10:609–620CrossRefPubMedGoogle Scholar
  32. 32.
    Lorincz M, Dan A, Lang M, Csaba G, Toth AG, Szekely C, Csagola A, Tuboly T (2012) Novel circovirus in European catfish (Silurus glanis). Arch Virol 157:1173–1176CrossRefPubMedGoogle Scholar
  33. 33.
    Todd D (2004) Avian circovirus diseases: lessons for the study of PMWS. Vet Microbiol 98:169–174CrossRefPubMedGoogle Scholar
  34. 34.
    Opriessnig T, Halbur PG (2012) Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 164:20–32CrossRefPubMedGoogle Scholar
  35. 35.
    Guo M, Chang KO, Hardy ME, Zhang Q, Parwani AV, Saif LJ (1999) Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses. J Virol 73:9625–9631PubMedPubMedCentralGoogle Scholar
  36. 36.
    Bank-Wolf BR, Konig M, Thiel HJ (2010) Zoonotic aspects of infections with noroviruses and sapoviruses. Vet Microbiol 140:204–212CrossRefPubMedGoogle Scholar
  37. 37.
    Carter MJ, Milton ID, Meanger J, Bennett M, Gaskell RM, Turner PC (1992) The complete nucleotide sequence of a feline calicivirus. Virology 190:443–448CrossRefPubMedGoogle Scholar
  38. 38.
    Meyers G, Wirblich C, Thiel HJ (1991) Rabbit hemorrhagic disease virus–molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 184:664–676CrossRefPubMedGoogle Scholar
  39. 39.
    Park YM, Kim JH, Gu SH, Lee SY, Lee MG, Kang YK, Kang SH, Kim HJ, Song JW (2012) Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology 422:144–150CrossRefPubMedGoogle Scholar
  40. 40.
    Li L, Shan T, Wang C, Cote C, Kolman J, Onions D, Gulland FM, Delwart E (2011) The fecal viral flora of California sea lions. J Virol 85:9909–9917CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Scheel TK, Simmonds P, Kapoor A (2015) Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 115:83–93CrossRefPubMedGoogle Scholar
  42. 42.
    Farkas T, Dufour J, Jiang X, Sestak K (2010) Detection of norovirus-, sapovirus- and rhesus enteric calicivirus-specific antibodies in captive juvenile macaques. J Gen Virol 91:734–738CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Soliman M, Alfajaro MM, Lee MH, Jeong YJ, Kim DS, Son KY, Kwon J, Choi JS, Lim JS, Choi JS, Lee TU, Cho KO, Kang MI (2015) The prevalence of duck hepatitis A virus types 1 and 3 on Korean duck farms. Arch Virol 160:493–498CrossRefPubMedGoogle Scholar
  44. 44.
    Zsak L, Strother KO, Kisary J (2008) Partial genome sequence analysis of parvoviruses associated with enteric disease in poultry. Avian Pathol 37:435–441CrossRefPubMedGoogle Scholar
  45. 45.
    Opriessnig T, Xiao CT, Gerber PF, Halbur PG (2014) Identification of recently described porcine parvoviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Vet Microbiol 173:9–16CrossRefPubMedGoogle Scholar
  46. 46.
    Yu X, Li B, Fu Y, Jiang D, Ghabrial SA, Li G, Peng Y, Xie J, Cheng J, Huang J, Yi X (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci USA 107:8387–8392CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yan Wang
    • 1
  • Shixing Yang
    • 1
  • Dawei Liu
    • 3
  • Chenglin Zhou
    • 4
  • Wang Li
    • 4
  • Yuan Lin
    • 5
  • Xiaochun Wang
    • 1
  • Quan Shen
    • 1
  • Hua Wang
    • 1
  • Chuang Li
    • 1
  • Minghui Zong
    • 1
  • Yuzhu Ding
    • 1
  • Qianben Song
    • 1
  • Xutao Deng
    • 6
  • Dunwu Qi
    • 2
  • Wen Zhang
    • 1
    Email author
  • Eric Delwart
    • 6
  1. 1.School of MedicineJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Sichuan Key Laboratory of Conservation Biology for Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduPeople’s Republic of China
  3. 3.College of Biology and the EnvironmentNanjing Forestry Police CollegeNanjingPeople’s Republic of China
  4. 4.Department of Medical Laboratory TestingJiangsu Taizhou People’s HospitalTaizhouPeople’s Republic of China
  5. 5.School of Basic Medical SciencesNingxia Medical UniversityYinchuanPeople’s Republic of China
  6. 6.Blood Systems Research Institute, Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations