Advertisement

Journal of Neural Transmission

, Volume 123, Issue 7, pp 731–736 | Cite as

Structural and functional considerations of the cholinergic brainstem

  • Juan Mena-Segovia
Translational Neurosciences - Review Article

Abstract

Cholinergic neurons of the brainstem have traditionally been associated with a role in wakefulness as part of the reticular activating system, but their function cannot be explained solely on the basis of their modulation of the brain state. Recent findings about their connectivity and functional heterogeneity suggest a wider role in behavior, where basal ganglia is at the center of their influence. This review focuses on recent findings that suggest an intrinsic functional organization of the cholinergic brainstem that is closely correlated with its connectivity with midbrain and forebrain circuits. Furthermore, recent evidence on the temporal structure of the activation of brainstem cholinergic neurons reveals fundamental aspects about the nature of cholinergic signaling. Consideration of the cholinergic brainstem complex in the context of wider brain circuits is critical to understand its contribution to normal behavior.

Keywords

Pedunculopontine Laterodorsal tegmental Cholinergic Reticular activating system Arousal Phasic 

Notes

Acknowledgments

I wish to thank J. Paul Bolam for comments on this manuscript.

References

  1. Alderson HL, Latimer MP, Winn P (2006) Intravenous self-administration of nicotine is altered by lesions of the posterior, but not anterior, pedunculopontine tegmental nucleus. Eur J Neurosci 23:2169–2175CrossRefPubMedGoogle Scholar
  2. Alderson HL, Latimer MP, Winn P (2008) A functional dissociation of the anterior and posterior pedunculopontine tegmental nucleus: excitotoxic lesions have differential effects on locomotion and the response to nicotine. Brain Struct Funct 213:247–253CrossRefPubMedPubMedCentralGoogle Scholar
  3. Armstrong DM, Saper CB, Levey AI, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68CrossRefPubMedGoogle Scholar
  4. Bordas C, Kovacs A, Pal B (2015) The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Front Cell Neurosci 9:121CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clark SD, Nothacker HP, Wang Z, Saito Y, Leslie FM, Civelli O (2001) The urotensin II receptor is expressed in the cholinergic mesopontine tegmentum of the rat. Brain Res 923:120–127CrossRefPubMedGoogle Scholar
  6. Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25:271–284CrossRefPubMedGoogle Scholar
  7. Datta S, Siwek DF (1997) Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep. J Neurophysiol 77:2975–2988PubMedGoogle Scholar
  8. Datta S, Siwek DF (2002) Single cell activity patterns of pedunculopontine tegmentum neurons across the sleep-wake cycle in the freely moving rats. J Neurosci Res 70:611–621CrossRefPubMedGoogle Scholar
  9. Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T, Mena-Segovia J (2014) A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 34:4509–4518CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dautan D, Hacioğlu Bay H, Bolam JP, Gerdjikov TV, Mena-Segovia J (2016) Extrinsic sources of cholinergic innervation of the striatal complex: a whole-brain mapping analysis. Front Neuroanat 10:1CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deurveilher S, Hennevin E (2001) Lesions of the pedunculopontine tegmental nucleus reduce paradoxical sleep (PS) propensity: evidence from a short-term PS deprivation study in rats. Eur J Neurosci 13:1963–1976CrossRefPubMedGoogle Scholar
  12. Diederich K, Koch M (2005) Role of the pedunculopontine tegmental nucleus in sensorimotor gating and reward-related behavior in rats. Psychopharmacol 179:402–408CrossRefGoogle Scholar
  13. Dobbs LK, Cunningham CL (2014) The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity. Behav Brain Res 265:198–202CrossRefPubMedPubMedCentralGoogle Scholar
  14. el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76:519–529CrossRefPubMedGoogle Scholar
  15. Erro E, Lanciego JL, Gimenez-Amaya JM (1999) Relationships between thalamostriatal neurons and pedunculopontine projections to the thalamus: a neuroanatomical tract-tracing study in the rat. Exp Brain Res 127:162–170CrossRefPubMedGoogle Scholar
  16. Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363:177–196CrossRefPubMedGoogle Scholar
  17. Gama RL, Tavora DG, Bomfim RC, Silva CE, de Bruin VM, de Bruin PF (2010) Sleep disturbances and brain MRI morphometry in Parkinson’s disease, multiple system atrophy and progressive supranuclear palsy—a comparative study. Parkinsonism Relat Dis 16:275–279CrossRefGoogle Scholar
  18. Gimenez-Amaya JM, McFarland NR, de las Heras S, Haber SN (1995) Organization of thalamic projections to the ventral striatum in the primate. J Comp Neurol 354:127–149CrossRefPubMedGoogle Scholar
  19. Gould E, Woolf NJ, Butcher LL (1989) Cholinergic projections to the substantia nigra from the pedunculopontine and laterodorsal tegmental nuclei. Neuroscience 28:611–623CrossRefPubMedGoogle Scholar
  20. Grace KP, Vanstone LE, Horner RL (2014) Endogenous cholinergic input to the pontine REM sleep generator is not required for REM sleep to occur. J Neurosci 34:14198–14209CrossRefPubMedGoogle Scholar
  21. Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68:837–853CrossRefPubMedGoogle Scholar
  22. Huitron-Resendiz S, Kristensen MP, Sanchez-Alavez M, Clark SD, Grupke SL, Tyler C, Suzuki C, Nothacker HP, Civelli O, Criado JR, Henriksen SJ, Leonard CS, de Lecea L (2005) Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. J Neurosci 25:5465–5474CrossRefPubMedGoogle Scholar
  23. Inglis WL, Olmstead MC, Robbins TW (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav Brain Res 123:117–131CrossRefPubMedGoogle Scholar
  24. Lanca AJ, Adamson KL, Coen KM, Chow BL, Corrigall WA (2000) The pedunculopontine tegmental nucleus and the role of cholinergic neurons in nicotine self-administration in the rat: a correlative neuroanatomical and behavioral study. Neuroscience 96:735–742CrossRefPubMedGoogle Scholar
  25. Lavoie B, Parent A (1994) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344:232–241CrossRefPubMedGoogle Scholar
  26. Lester DB, Miller AD, Blaha CD (2010) Muscarinic receptor blockade in the ventral tegmental area attenuates cocaine enhancement of laterodorsal tegmentum stimulation-evoked accumbens dopamine efflux in the mouse. Synapse 64:216–223CrossRefPubMedGoogle Scholar
  27. Maclaren DA, Wilson DI, Winn P (2013) Updating of action-outcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus. Neurobiol Learn Mem 102:28–33CrossRefPubMedPubMedCentralGoogle Scholar
  28. MacLaren DA, Markovic T, Clark SD (2014a) Assessment of sensorimotor gating following selective lesions of cholinergic pedunculopontine neurons. Eur J Neurosci 40:3526–3537CrossRefPubMedGoogle Scholar
  29. MacLaren DA, Santini JA, Russell AL, Markovic T, Clark SD (2014b) Deficits in motor performance after pedunculopontine lesions in rats—impairment depends on demands of task. Eur J Neurosci 40:3224–3236CrossRefPubMedGoogle Scholar
  30. Martinez-Gonzalez C, Bolam JP, Mena-Segovia J (2011) Topographical organization of the pedunculopontine nucleus. Front Neuroanat 5:22CrossRefPubMedPubMedCentralGoogle Scholar
  31. Martinez-Gonzalez C, Wang HL, Micklem BR, Bolam JP, Mena-Segovia J (2012) Subpopulations of cholinergic, GABAergic and glutamatergic neurons in the pedunculopontine nucleus contain calcium-binding proteins and are heterogeneously distributed. Eur J Neurosci 35:723–734CrossRefPubMedGoogle Scholar
  32. Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271CrossRefPubMedGoogle Scholar
  33. Mena-Segovia J, Micklem BR, Nair-Roberts RG, Ungless MA, Bolam JP (2009) GABAergic neuron distribution in the pedunculopontine nucleus defines functional subterritories. J Comp Neurol 515:397–408CrossRefPubMedGoogle Scholar
  34. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201CrossRefPubMedGoogle Scholar
  35. Norton AB, Jo YS, Clark EW, Taylor CA, Mizumori SJ (2011) Independent neural coding of reward and movement by pedunculopontine tegmental nucleus neurons in freely navigating rats. Eur J Neurosci 33:1885–1896CrossRefPubMedPubMedCentralGoogle Scholar
  36. Oakman SA, Faris PL, Kerr PE, Cozzari C, Hartman BK (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869PubMedGoogle Scholar
  37. Okada K, Toyama K, Inoue Y, Isa T, Kobayashi Y (2009) Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J Neurosci 29:4858–4870CrossRefPubMedGoogle Scholar
  38. Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, BaselGoogle Scholar
  39. Pan WX, Hyland BI (2005) Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J Neurosci 25:4725–4732CrossRefPubMedGoogle Scholar
  40. Parent M, Descarries L (2008) Acetylcholine innervation of the adult rat thalamus: distribution and ultrastructural features in dorsolateral geniculate, parafascicular, and reticular thalamic nuclei. J Comp Neurol 511:678–691CrossRefPubMedGoogle Scholar
  41. Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates, 7th edn. Academic Press, San DiegoGoogle Scholar
  42. Petzold A, Valencia M, Pal B, Mena-Segovia J (2015) Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front Neural Circuits 9:68CrossRefPubMedPubMedCentralGoogle Scholar
  43. Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259:483–528CrossRefPubMedGoogle Scholar
  44. Satoh K, Armstrong DM, Fibiger HC (1983) A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry. Brain Res Bull 11:693–720CrossRefPubMedGoogle Scholar
  45. Steidl S, Veverka K (2015) Optogenetic excitation of LDTg axons in the VTA reinforces operant responding in rats. Brain Res 1614:86–93CrossRefPubMedGoogle Scholar
  46. Steiniger B, Kretschmer BD (2004) Effects of ibotenate pedunculopontine tegmental nucleus lesions on exploratory behaviour in the open field. Behav Brain Res 151:17–23CrossRefPubMedGoogle Scholar
  47. Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC (1990) Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMedGoogle Scholar
  48. Takakusaki K (2016) Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J Neural Transm (Vienna) (in press)Google Scholar
  49. Thompson JA, Felsen G (2013) Activity in mouse pedunculopontine tegmental nucleus reflects action and outcome in a decision-making task. J Neurophysiol 110:2817–2829CrossRefPubMedPubMedCentralGoogle Scholar
  50. Van Dort CJ, Zachs DP, Kenny JD, Zheng S, Goldblum RR, Gelwan NA, Ramos DM, Nolan MA, Wang K, Weng FJ, Lin Y, Wilson MA, Brown EN (2015) Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep. Proc Natl Acad Sci USA 112:584–589CrossRefPubMedGoogle Scholar
  51. Vitale F, Mattei C, Capozzo A, Pietrantoni I, Mazzone P, Scarnati E (2016) Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat. Neuroscience 317:12–22CrossRefPubMedGoogle Scholar
  52. Wang HL, Morales M (2009) Pedunculopontine and laterodorsal tegmental nuclei contain distinct populations of cholinergic, glutamatergic and GABAergic neurons in the rat. Eur J Neurosci 29:340–358CrossRefPubMedGoogle Scholar
  53. Wilson DI, MacLaren DA, Winn P (2009) Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur J Neurosci 30:504–513CrossRefPubMedGoogle Scholar
  54. Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain: iII. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Center for Molecular and Behavioral Neuroscience, Aidekman Research CenterRutgers UniversityNewarkUSA

Personalised recommendations