Diversity and distribution of phototrophic primary producers in saline lakes from Transylvania, Romania

Abstract

Phototrophic primary producers are regarded as valuable indicators in aquatic habitats, since they are spread in a wide range of environmental conditions. However, the communities harbored by extreme ecosystems such as the saline lakes have been scarcely investigated with respect to their diversity and roles in the ecosystem functioning. The present study investigates the structure, diversity, and distribution of autotrophs from 19 lakes located in the Transylvanian Basin (Romania). Overall, 83 aquatic taxa were identified, belonging to Bacillariophyta (67), Cyanobacteria (10), Chlorophyta (4), Euglenophyta (1), and Xanthophyta (1). Standardized limnological methods were employed for sampling and analyses: measurements of morphometric, physical and chemical parameters, sampling techniques, optical microscopy identification of taxa and multivariate processing of data. Because saline lakes typically sustain undiversified biotic communities, usually well adapted to extreme conditions, we hypothesized that: (1) The main environmental driver of taxonomic diversity (expressed as species richness) would be the salinity; and (2) the same halophilic dominant taxa would occur in all hypersaline lakes (TDS > 50 g L−1). However, our results disproved both statements. Firstly, salinity was found to be an important driver of taxa diversity, but only subsequent to high habitat heterogeneity, lake area and nutrient concentrations. Secondly, high percentages of halotolerant, and not halophilic species were found, together with increased numbers of rare species (appearing in only one lake). Thus, the present study helps improve the current knowledge on the diversity of primary producers from saline lakes, opening new perspectives in understanding the functioning of such extreme environments.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

source: Google Earth Pro—7.3.2.5491)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abid O, Sellami-Kammoun A, Ayadi H, Drira Z, Bouain A, Aleya L (2008) Biochemical adaptation of phytoplankton to salinity and nutrient gradients in a coastal solar saltern, Tunisia. Estuarine Coastal Shelf Sci 80:391–400. https://doi.org/10.1016/j.ecss.2008.09.007

    Article  Google Scholar 

  2. Afonina EY, Tashlykova NA (2018) Plankton community and the relationship with the environment in saline lakes of Onon-Torey plain, Northeastern Mongolia. Saudi J Biol Sci 25:399–408. https://doi.org/10.1016/j.sjbs.2017.01.003

    Article  PubMed  Google Scholar 

  3. Alcocer J, Hammer UT (1998) Saline lake ecosystems of Mexico. Aquat Ecosyst Health Managem 1:291–315. https://doi.org/10.1016/S1463-4988(98)00011-6

    Article  Google Scholar 

  4. Alexe M (2010) Study of salt lakes in the Transylvanian Basin. Cluj University Press, Cluj-Napoca (in Romanian)

    Google Scholar 

  5. Alexe M, Șerban G, Baricz A, Andrei A-Ș, Cristea A, Battes KP, Cîmpean M, Momeu L, Muntean V, Porav SA, Banciu HL (2018) Limnology and plankton diversity of salt lakes from Transylvanian Basin (Romania): a review. J Limnol 77:17–34. https://doi.org/10.4081/jlimnol.2017.1657

    Article  Google Scholar 

  6. Anderson GC (1958) Seasonal characteristics of two saline lakes in Washington. Limnol Oceanogr 3:51–68

    Article  Google Scholar 

  7. Andrei A-Ş, Baricz A, Păușan M, Muntean V, Sicora C, Alexe M, Rakosy-Tican E, Banciu HL (2017) Spatial distribution and molecular diversity of archaeal communities in the extreme hypersaline meromictic Brâncoveanu Lake (Transylvanian Basin, Romania). Geomicrobiol J 34:130–138. https://doi.org/10.1080/01490451.2016.1149527

    Article  Google Scholar 

  8. Andrei A-Ş, Robeson MS, Baricz A, Coman C, Muntean V, Ionescu A, Etiope G, Alexe M, Sicora CI, Podar M, Banciu HL (2015) Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes. ISME J 9:2642–2656. https://doi.org/10.1038/ismej.2015.60

    Article  PubMed  PubMed Central  Google Scholar 

  9. Baricz A, Coman C, Andrei A-Ş, Muntean V, Keresztes ZG, Păușan M, Alexe M, Banciu HL (2014) Spatial and temporal distribution of archaeal diversity in meromictic, hypersaline Ocnei Lake (Transylvanian Basin, Romania). Extremophiles 18:399–413. https://doi.org/10.1007/s00792-013-0625-6

    CAS  Article  PubMed  Google Scholar 

  10. Baricz A, Cristea A, Muntean V, Teodosiu G, Andrei A-Ş, Molnár I, Alexe M, Rakosy-Tican E, Banciu HL (2015) Culturable diversity of aerobic halophilic archaea (Fam. Halobacteriaceae) from hypersaline, meromictic Transylvanian lakes. Extremophiles 19:525–537. https://doi.org/10.1007/s00792-015-0738-1

    CAS  Article  PubMed  Google Scholar 

  11. Baricz A, Chiriac CM, Andrei A-Ș, Bulzu P-A, Levei EA, Cadar O, Battes KP, Cîmpean M, Șenilă M, Cristea A, Muntean V, Alexe M, Coman C, Szekeres EK, Sicora CI, Ionescu A, Blain D, O’Neill WK, Edwards J, Hallsworth JE, Banciu HL (2020) Spatio-temporal insights into microbiology of the freshwater-to-hypersaline, oxic-hypoxic-euxinic waters of Ursu Lake. Environm Microbiol (Early View). https://doi.org/10.1111/1462-2920.14909

    Article  Google Scholar 

  12. Bolgovics Á, Ács É, Várbíró G, Görgényi J, Borics G (2016) Species area relationship (SAR) for benthic diatoms: a study on aquatic islands. Hydrobiologia 764:91–102. https://doi.org/10.1007/s10750-015-2278-1

    CAS  Article  Google Scholar 

  13. Bulgǎreanu VAC (1996) Protection and management of anthroposaline lakes in Romania. Lakes Reservoirs 2:211–229

    Article  Google Scholar 

  14. Cărăuș I (2017) Algae of Romania. A distributional checklist of actual algae. Version 2.4. Stud Cercet Biol 7:1–1002

    Google Scholar 

  15. Chavent M, Kuentz V, Labenne A, Liquet B, Saracco J (2014) Multivariate analysis of mixed data: the PCAmixdata R package. Available at: http://arxiv.org/abs/1411.4911

  16. Demeter L, Stoicescu A (2008) A review of the distribution of large branchiopods (Branchiopoda: Anostraca, Notostraca, Spinicaudata, Laevicaudata) in Romania. North-West J Zool 4:203–223

    Google Scholar 

  17. Dodds W (2002) Freshwater ecology: concepts and environmental applications. Academic Press Elsevier, San Diego

    Google Scholar 

  18. Ettl H (1983) Chlorophyta 1. Phytomonadina. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  19. Gao YN, Dong J, Fu QQ, Wang YP, Chen C, Li JH, Li R, Zhou CJ (2017) Allelopathic effects of submerged macrophytes on phytoplankton. Allelopathy J 40:1–22

    CAS  Article  Google Scholar 

  20. Gheorghievici LM, Gheorghievici G, Tănase I (2015) The phytoplankton composition features of five Romanian pelogenous ecosystems. Environm Engin Managem J 14:975–984

    Google Scholar 

  21. Gheorghievici LM, Pompei I, Gheorghievici G, Tănase I (2012) The influence of abiotic factors on suppliers of organic matter in the peloidogenesis process from Lake Techirghiol, Romania. AACL Bioflux 5:69–78

    Google Scholar 

  22. Google Earth Pro Version 7.3.2.5491 (2018) Transylvania, Romania. 46°17′07.50″N, 24°50′23.26″E; eye altitude 424.68 km. Available at: http://www.earth.google.com. Accessed 25 Oct 2018

  23. Gross EM, Hilt S, Lombardo P, Mulderij G (2007) Searching for allelopathic effects of submerged macrophytes on phytoplankton: state of the art and open questions. In: Gulati RD, Lammens E, De Pauw N, Van Donk E (eds) Shallow Lakes in a Changing World Developments in Hydrobiology, vol. 196. Springer, Dordrecht, pp 77–88. https://doi.org/10.1007/978-1-4020-6399-2_8

    Google Scholar 

  24. Hammer UT (1986) Saline lake ecosystems of the World. Kluwer Academic, Dordrecht

    Google Scholar 

  25. Hodgson DA, Vyverman W, Sabbe K (2001) Limnology and biology of saline lakes in the Rauer Islands, eastern Antarctica. Antarct Sci 13:255–270

    Article  Google Scholar 

  26. Horne AJ, Goldman CR (1994) Limnology, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  27. Huber-Pestalozzi G (1955) Das Phytoplankton des Süsswassers, Band XVI, 4. Teil: Euglenophyceen. Schweizerbart Science Publishers, Stuttgart

    Google Scholar 

  28. Ionescu V, Năstăsescu M, Spiridon L, Bulgăreanu VAC (1998) The biota of Romanian saline lakes on rock salt bodies: a review. Int J Salt Lake Res 7:45–80

    Google Scholar 

  29. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

  30. Kelly MG, Cazaubon A, Coring E, Dell’Uomo A, Ector L, Goldsmith B, Guasch H, Hürlimann J, Jarlman A, Kawecka B, Kwandrans J, Laugaste R, Lindstrøm E-A, Leitao M, Marvan P, Padisák J, Pipp E, Prygiel J, Rott E, Sabater S, van Dam H, Vizinet J (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224. https://doi.org/10.1023/A:1008033201227

    Article  Google Scholar 

  31. Keresztes ZG, Felföldi T, Somogyi B, Székely G, Dragoş N, Márialigeti K, Bartha C, Vörös L (2012) First record of picophytoplankton diversity in Central European hypersaline lakes. Extremophiles 16:759–769. https://doi.org/10.1007/s00792-012-0472-x

    Article  PubMed  Google Scholar 

  32. Klymiuk V, Barinova S (2016) Phytoplankton cell size in saline lakes. Res J Pharm Biol Chem Sci 7:1077–1085

    CAS  Google Scholar 

  33. Komárek J, Anagnostidis K (1998) Cyanoprokariota, 1.Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, pp 1–759

    Google Scholar 

  34. Krammer K, Lange-Bertalot H (1986) Bacillariophyceae, 1. Teil: Naviculaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/1. Gustav Fischer Verlag, Stuttgart, pp 1–876

    Google Scholar 

  35. Krammer K, Lange-Bertalot H (1988) Bacillariophyceae, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/2. Gustav Fischer Verlag, Stuttgart, pp 1–596

    Google Scholar 

  36. Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae, 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/3. Gustav Fischer Verlag, Stuttgart, pp 1–598

    Google Scholar 

  37. Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae, 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: Ettl H, Gärtner G, Gerloff J, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa 2/4. Gustav Fischer Verlag, Stuttgart, pp 1–437

    Google Scholar 

  38. Liu X, Hou W, Dong H, Wang S, Jiang H, Wu G, Yang J, Li G (2016) Distribution and diversity of cyanobacteria and eukaryotic algae in Qinghai-Tibetan lakes. Geomicrobiol J 33:860–869. https://doi.org/10.6084/m9.figshare.1626687.V2

    CAS  Article  Google Scholar 

  39. Lv T, He Q, Hong Y, Liu C, Yu D (2019) Effects of water quality adjusted by submerged macrophytes on the richness of the epiphytic algal community. Frontiers Pl Sci 9:1980. https://doi.org/10.3389/fpls.2018.01980

    Article  Google Scholar 

  40. Mulderij G, Van Nes EH, Van Donk E (2007) Macrophyte-phytoplankton interactions: the relative importance of allelopathy versus other factors. Ecol Model 204:85–92. https://doi.org/10.1016/j.ecolmodel.2006.12.020

    Article  Google Scholar 

  41. Muntean V, Crișan R, Paşca D, Kiss S, Drăgan-Bularda M (1996) Enzymological classification of salt lakes in Romania. Int J Salt Lake Res 5:35–44

    Article  Google Scholar 

  42. Nagy L (2012) Comunități de diatomee din unele ape stătătoare cu grade diferite de salinitate de la Turda. PhD Thesis, Babeș-Bolyai University, Cluj-Napoca (in Romanian)

  43. Oprean L (2008) Biodinamica lacurilor de la Ocna Sibiului. Editura Universităţii „Lucian Blaga”, Sibiu (in Romanian)

    Google Scholar 

  44. Padisák J (2004) Phytoplankton. In: O’Sullivan P, Reynolds CS (eds) The lakes handbook, vol. 1. Limnology and limnetic ecology. Blackwell Publishing, Malden, pp 251–308

    Google Scholar 

  45. Padisák J, Vasas G, Borics G (2016) Phycogeography of freshwater phytoplankton: traditional knowledge and new molecular tools. Hydrobiologia 764:3–27. https://doi.org/10.1007/s10750-015-2259-4

    CAS  Article  Google Scholar 

  46. Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology 10:73–85. https://doi.org/10.1007/s10201-009-0262-z

    CAS  Article  Google Scholar 

  47. Shiklomanov IA (1990) Global water resources. Nat Resources 26:34–43

    Google Scholar 

  48. Smith VH, Foster BL, Grover JP, Holt RD, Leibold MA, deNoyelles F (2005) Phytoplankton species richness scales consistently from laboratory microcosms to the world’s oceans. Proc Natl Acad Sci USA 102:4393–4396. https://doi.org/10.1073/pnas.0500094102

    CAS  Article  PubMed  Google Scholar 

  49. Somogyi B, Vörös L, Pálffy K, Székely G, Bartha C, Keresztes ZG (2014) Picophytoplankton predominance in hypersaline lakes (Transylvanian Basin, Romania). Extremophiles 18:1075–1084. https://doi.org/10.1007/s00792-014-0685-2

    CAS  Article  PubMed  Google Scholar 

  50. Tenenhaus M, Pagès J, Ambroisine L, Guinot C (2005) PLS methodology for studying relationships between hedonic judgements and product characteristics. Food Qual Preference 16:315–325. https://doi.org/10.1016/j.foodqual.2004.05.013

    Article  Google Scholar 

  51. Várbíró G, Görgényi J, Tóthmérész B, Padisák J, Hajnal É, Borics G (2017) Functional redundancy modifies species-area relationship for freshwater phytoplankton. Ecol Evol 7:9905–9913. https://doi.org/10.1002/ece3.3512

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang Z, Qi Y, Chen J, Xu N, Yang Y (2006) Phytoplankton abundance, community structure and nutrients in cultural areas of Daya Bay, South China Sea. J Marine Syst 62:85–94. https://doi.org/10.1016/j.jmarsys.2006.04.008

    Article  Google Scholar 

  53. Washington HG (1984) Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Resources 18:653–694

    Google Scholar 

  54. Watson SB, McCauley E, Downing JA (1997) Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol Oceanogr 42:487–495. https://doi.org/10.4319/lo.1997.42.3.0487

    Article  Google Scholar 

  55. Welch PS (1948) Limnological methods. McGraw-Hill Book Company, New York

    Google Scholar 

  56. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press Elsevier, San Diego

    Google Scholar 

  57. Wetzel RG, Likens G (2000) Limnological analyses, 3rd edn. Springer, New York

    Google Scholar 

  58. Williams WD (1978) Limnology of Victorian Salt Lakes, Australia. Verh Int Vereinigung Theor Limnol 20:1165–1174. https://doi.org/10.1080/03680770.1977.11896667

    Article  Google Scholar 

  59. Williams WD (1998) Management of inland saline waters. Guidelines of lake management, vol. 6. ILEC/UNEP, Kusatsu

    Google Scholar 

  60. Wurtsbaugh WA, Miller C, Null SE, DeRose RJ, Wilcock P, Hahnenberger M, Howe F, Moore J (2017) Decline of the world’s saline lakes. Nat Geosci 10:816. https://doi.org/10.1038/ngeo3052

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported through grants of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project numbers PN-II-ID-PCE-2011-3-0546 and PN-III-P4-ID-PCE-2016-0303. We are grateful to Dr. O. Mera, D. Buta, J. Nagy-Fülöp, and I. Costea for granting the permission to enter the study areas. We thank Dr. E.A. Levei, A.M. Incze, and Dr. M. Șenilă at INCDO-INOE 2000—Research Institute for Analytical Instrumentation (Cluj-Napoca, Romania) for performing the chemical analyses of sampled water.

Funding

This study was funded by the Romanian National Authority for Scientific Research, CNCS—UEFISCDI (grant numbers PN-II-ID-PCE-2011–3-0546 and PN-III-P4-ID-PCE-2016–0303).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karina P. Battes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Bogdan-Iuliu Hurdu.

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. List of the main physico-chemical and morphometric parameters measured for the 19 saline lakes from the Transylvanian Basin (central Romania), together with habitat heterogeneity classes.

Online Resource 2. Segregation of taxa groups along the two major Principal Component Analysis (PCA) axes, based on their presence in the 19 saline lakes considered for the present study (axes F1 and F2: 52.87%).

Online Resource 3. List of the parameters considered in the Partial Least Square Regression (PLS-R) analyses.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Şuteu, A.M., Momeu, L., Battes, K.P. et al. Diversity and distribution of phototrophic primary producers in saline lakes from Transylvania, Romania. Plant Syst Evol 307, 12 (2021). https://doi.org/10.1007/s00606-020-01733-0

Download citation

Keywords

  • Cyanobacteria and unicellular algae
  • Environmental drivers
  • Halophilic
  • Halotolerant
  • Species richness