Phylogeography and taxonomic reassessment of Arabidopsis halleri – a montane species from Central Europe

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A Correction to this article was published on 27 May 2020

A Correction to this article was published on 27 November 2019

This article has been updated

Abstract

Evolutionary histories of plants from the mid-elevation (montane) zone of European mountain ranges have only rarely been documented, standing in contrast to those of well-researched inhabitants of (sub-)alpine and foothill zones. To fill this gap, we have reconstructed the phylogeography of Arabidopsis halleri, a species preferring coniferous woodlands and corresponding secondary habitats in the montane zone of the Alps, Carpathians, Hercynian massif and Dinaric Alps. Based on range-wide sampling and finer-scale analyses of multiple multilocus DNA markers, we have addressed phylogeographic patterns among the Carpathian populations and inferred their relationships to A. halleri from neighbouring mountain ranges. We also present a taxonomic re-evaluation of the species in Europe, based on the revealed genetic structure complemented by morphological data. Besides two distinct Alpine groups, we identified a major phylogeographic split between the Western and South-Eastern Carpathians. Interestingly, Western and South-Eastern Carpathian populations were genetically closer to populations from neighbouring mountain ranges (the Hercynian massif and the Dinaric Alps for the Western and South-Eastern Carpathians, respectively) than they were to each other, likely reflecting long-term isolation in different parts of the Carpathians or different (re)colonization pathways during the Holocene. In spite of the considerable environmentally correlated variation, the five major European genetic groups exhibited distinctive morphological characters, and we therefore propose treating them as separate subspecies: A. halleri subsp. halleri (Western Europe, Hercynian massif), A. halleri subsp. tatrica (Western Carpathians), A. halleri subsp. ovirensis (Eastern Alps), A. halleri subsp. occidentalis (Western Alps) and A. halleri subsp. dacica (Eastern and Southern Carpathians and Dinaric Alps).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 27 November 2019

    Unfortunately, the Fig. 2 was incorrectly published in the original publication.

  • 27 May 2020

    Correction to: Plant Systematics and Evolution

References

  1. Albach DC, Schönswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica alpina complex in Europe and North America. Molec Ecol 15:3269–3286. https://doi.org/10.1111/j.1365-294X.2006.02980.x

    CAS  Article  Google Scholar 

  2. Alvarez N, Manel S, Schmitt T (2012) Contrasting diffusion of Quaternary gene pools across Europe: the case of the arctic-alpine Gentiana nivalis L. (Gentianaceae). Flora Morphol Distrib Funct Ecol Pl 207:408–413. https://doi.org/10.1016/j.flora.2012.03.006

    Article  Google Scholar 

  3. Bhagwat SA, Willis KJ (2008) Species persistence in northerly glacial refugia of Europe: a matter of chance or biogeographical traits? J Biogeogr 35:464–482. https://doi.org/10.1111/j.1365-2699.2007.01861.x

    Article  Google Scholar 

  4. Clauss MJ, Cobban H, Mitchell-Olds T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Molec Ecol 11:591–601. https://doi.org/10.1046/j.0962-1083.2002.01465.x

    CAS  Article  Google Scholar 

  5. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molec Ecol Notes 3:167–169. https://doi.org/10.1046/j.1471-8286.2003.00351.x

    CAS  Article  Google Scholar 

  6. Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x

    Article  Google Scholar 

  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    CAS  Article  Google Scholar 

  8. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x

    CAS  Article  Google Scholar 

  9. Gugerli F, Englisch T, Niklfeld H, Tribsch A, Mirek Z, Ronikier M, Zimmermann NE, Holderegger R, Taberlet P (2008) Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation—a project synopsis. Perspect Pl Ecol Evol Syst 10:259–281. https://doi.org/10.1016/j.ppees.2008.07.001

    Article  Google Scholar 

  10. Heufell J (1858) Enumeratio plantarum Banatus Temesiensis sponte crescentium et frequentius cultariim. Verh Zool-Bot Ges Wien 8:39–240

    Google Scholar 

  11. Hewitt GM (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. https://doi.org/10.1038/35016000

    CAS  Article  PubMed  Google Scholar 

  12. Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA (2014) Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 14:1–21. https://doi.org/10.1186/s12862-014-0224-x

    Article  Google Scholar 

  13. Jalas J, Suominen J (1994) Atlas florae europaeae 10. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki

    Google Scholar 

  14. Jasiewicz A (1965) Rośliny naczyniowe Bieszczadów Zachodnich. Monogr Bot 22:1–340

    Google Scholar 

  15. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    CAS  Article  PubMed  Google Scholar 

  16. Jones BMG, Akeyrod RJ (1993) Cardaminopsis. In: Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora europaea, 2nd edn. Cambridge University Press, Cambridge, pp 351–352

  17. Juřičková L, Horáčková J, Ložek V (2014) Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quatern Res 82:222–228. https://doi.org/10.1016/j.yqres.2014.01.015

    Article  Google Scholar 

  18. Kerner A (1870) Die natürlichen Floren im Gelände der deutschen Alpen. Fromann, Jena

    Google Scholar 

  19. Klecka WR (1980) Discriminant analysis. Sage Publications, Beverly Hills

    Book  Google Scholar 

  20. Koch MA (2019) The plant model system Arabidopsis set in an evolutionary, systematic, and spatio-temporal context. J Exp Bot 70:55–67. https://doi.org/10.1093/jxb/ery340

    CAS  Article  PubMed  Google Scholar 

  21. Koch MA, German DA (2013) Taxonomy and systematics are key to biological information: arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers Pl Sci 4:1–14. https://doi.org/10.3389/fpls.2013.00267

    Article  Google Scholar 

  22. Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943

    Article  Google Scholar 

  23. Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K (2016) Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Molec Ecol 25:3929–3949. https://doi.org/10.1111/mec.13721

    Article  Google Scholar 

  24. Kolník M, Marhold K (2006) Distribution, chromosome numbers and nomenclature conspect of Arabidopsis halleri (Brassicaceae) in the Carpathians. Biologia (Bratislava) 61(41–50):486

    Google Scholar 

  25. Krämer U (2010) Metal hyperaccumulation in plants. Annual Rev Pl Biol 61:517–534. https://doi.org/10.1146/annurev-arplant-042809-112156

    CAS  Article  Google Scholar 

  26. Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon press, Oxford

    Google Scholar 

  27. Kuss P, Armbruster GFJ, Ægisdóttir HH, Scheepens JF, Stöcklin J (2011) Spatial genetic structure of Campanula thyrsoides across the European Alps: indications for glaciation-driven allopatric subspeciation. Perspect Pl Ecol Evol Syst 13:101–110. https://doi.org/10.1016/j.ppees.2011.02.003

    Article  Google Scholar 

  28. Marhold K (2011) Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy TF, Lack HW (eds) Monographic plant systematics: fundamental assessment of plant biodiversity. Gantner, Ruggel, pp 73–99

    Google Scholar 

  29. Merxmüller H (1952) Untersuchungen zur Sippengliederung und Arealbildung in den Alpen. Jahrb Vereins Schutze Alpenpfl Alpentiere 17–19:1–105

    Google Scholar 

  30. Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc 119:528–559

    Article  Google Scholar 

  31. Mráz P, Szela̧g Z (2004) Chromosome numbers and reproductive systems in selected species of Hieracium and Pilosella (Asteraceae) from Romania. Ann Bot Fenn 41:405–414

    Google Scholar 

  32. Mráz P, Gaudeul M, Rioux D, Gielly L, Choler P, Taberlet P (2007) Genetic structure of Hypochaeris uniflora (Asteraceae) suggests vicariance in the Carpathians and rapid post-glacial colonization of the Alps from an eastern Alpine refugium. J Biogeogr 34:2100–2114. https://doi.org/10.1111/j.1365-2699.2007.01765.x

    Article  Google Scholar 

  33. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  34. Pachschwöll C, García PE, Winkler M, Schneeweiss GM, Schönswetter P (2015) Polyploidisation and geographic differentiation drive diversification in a European high mountain plant group (Doronicum clusii aggregate, Asteraceae). PLoS ONE 10:1–30. https://doi.org/10.1371/journal.pone.0118197

    CAS  Article  Google Scholar 

  35. Paun O, Schönswetter P, Winkler M, Tribsch A (2008) Historical divergence vs. contemporary gene flow: evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Molec Ecol 17:4263–4275. https://doi.org/10.1111/j.1365-294X.2008.03908.x

    CAS  Article  Google Scholar 

  36. Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I (2005) Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in central Europe: the cpDNA testimony. Molec Ecol 14:4403–4414. https://doi.org/10.1111/j.1365-294X.2005.02739.x

    CAS  Article  Google Scholar 

  37. Pauwels M, Roosens N, Frérot H, Saumitou-Laprade P (2008a) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Pl Biol 11:129–134. https://doi.org/10.1016/j.pbi.2008.01.005

    CAS  Article  Google Scholar 

  38. Pauwels M, Willems G, Roosens N, Frérot H, Saumitou-Laprade P (2008b) Merging methods in molecular and ecological genetics to study the adaptation of plants to anthropogenic metal-polluted sites: implications for phytoremediation. Molec Ecol 17:109–119. https://doi.org/10.1111/j.1365-294X.2007.03486.x

    CAS  Article  Google Scholar 

  39. Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitou-Laprade P (2012) Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytol 193:916–928. https://doi.org/10.1111/j.1469-8137.2011.04003.x

    CAS  Article  PubMed  Google Scholar 

  40. Pax F (1898) Grundzüge der Pflanzenverbreitung in der Karpathen. 1. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  41. Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L (2019) Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans Ser B 374:20180243. https://doi.org/10.1098/rstb.2018.0243

    CAS  Article  Google Scholar 

  42. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Puşcaş M, Choler P (2012) A biogeographic delineation of the European Alpine System based on a cluster analysis of Carex curvula-dominated grasslands. Flora Morphol Distrib Funct Ecol Pl 207:168–178. https://doi.org/10.1016/j.flora.2012.01.002

    Article  Google Scholar 

  44. Ronikier M (2011) Biogeography of high-mountain plants in the Carpathians: an emerging phylogeographical perspective. Taxon 60:373–389

    Article  Google Scholar 

  45. Ronikier M, Cieślak E, Korbecka G (2008) High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): evidence for glacial survival in several Carpathian regions and long-term isolation between the Carpathians and the Alps. Molec Ecol 17:1763–1775. https://doi.org/10.1111/j.1365-294X.2008.03664.x

    CAS  Article  Google Scholar 

  46. Ronikier M, Schneeweiss GM, Schönswetter P (2012) The extreme disjunction between Beringia and Europe in Ranunculus glacialis s. l. (Ranunculaceae) does not coincide with the deepest genetic split—a story of the importance of temperate mountain ranges in arctic-alpine phylogeography. Molec Ecol 21:5561–5578. https://doi.org/10.1111/mec.12030

    CAS  Article  Google Scholar 

  47. Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385. https://doi.org/10.1126/science.1078311

    CAS  Article  PubMed  Google Scholar 

  48. Schmitt T (2017) Molecular biogeography of the high mountain systems of Europe: an overview. In: Catalan J, Ninot JM, Aniz MM (eds) High mountain conservation in a changing world. Advances in global change research, vol 62. Springer, Berlin, pp 63–74. https://doi.org/10.1007/978-3-319-55982-7_3

    Chapter  Google Scholar 

  49. Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732. https://doi.org/10.2307/25065429

    Article  Google Scholar 

  50. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molec Ecol 14:3547–3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x

    CAS  Article  Google Scholar 

  51. Šrámková-Fuxová G, Záveská E, Kolář F, Lučanová M, Španiel S, Marhold K (2017) Range-wide genetic structure of Arabidopsis halleri (Brassicaceae): glacial persistence in multiple refugia and origin of the Northern Hemisphere disjunction. Bot J Linn Soc 185:321–342. https://doi.org/10.1093/botlinnean/box064

    Article  Google Scholar 

  52. Stein RJ, Höreth S, de Melo JRF, Syllwasschy L, Lee G, Garbin ML, Clemens S, Krämer U (2017) Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol 213:1274–1286. https://doi.org/10.1111/nph.14219

    CAS  Article  PubMed  Google Scholar 

  53. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of the modern biota. Trends Ecol Evol 16:608–613. https://doi.org/10.1111/mec.13585

    CAS  Article  Google Scholar 

  54. Stolpe C, Krämer U, Müller C (2017) Heavy metal (hyper)accumulation in leaves of Arabidopsis halleri is accompanied by a reduced performance of herbivores and shifts in leaf glucosinolate and element concentrations. Environm Exp Bot 133:78–86. https://doi.org/10.1016/j.envexpbot.2016.10.003

    CAS  Article  Google Scholar 

  55. Taberlet P, Fumagalli L, Wust-Saucy A-G, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464. https://doi.org/10.1046/j.1365-294x.1998.00289.x

    CAS  Article  Google Scholar 

  56. Těšitel J, Malinová T, Štech M, Herbstová M (2009) Variation in the Melampyrum sylvaticum group in the Carpathian and Hercynian region: two lineages with different evolutionary histories. Preslia 81:1–22

    Google Scholar 

  57. Thiel-Egenter C, Alvarez N, Holderegger R, Tribsch A, Englisch T, Wohlgemuth T, Colli L, Gaudeul M, Gielly L, Jogan N, Linder HP, Negrini R, Niklfeld H, Pellecchia M, Rioux D, Schönswetter P, Taberlet P, van Loo M, Winkler M, Gugerli F (2011) Break zones in the distributions of alleles and species in alpine plants. J Biogeogr 38:772–782. https://doi.org/10.1111/j.1365-2699.2010.02441.x

    Article  Google Scholar 

  58. Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds) (2018) International code of nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the nineteenth international botanical congress Shenzhen, China, July 2017, Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten. Available at: https://doi.org/10.12705/Code.2018

    Google Scholar 

  59. Van Rossum F, Bonnin I, Fénart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species. Molec Ecol 13:2959–2967. https://doi.org/10.1111/j.1365-294X.2004.02314.x

    CAS  Article  Google Scholar 

  60. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of heavy metal hyperaccumulation in plants. Phytoremediat Environm Pollut 181:759–776. https://doi.org/10.4324/9781315161549

    CAS  Article  Google Scholar 

  61. Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414. https://doi.org/10.1093/nar/23.21.4407

    CAS  Article  PubMed  Google Scholar 

  62. Wasowicz P, Pauwels M, Pasierbinski A, Przedpelska-Wasowicz EM, Babst-Kostecka AA, Saumitou-Laprade P, Rostanski A (2016) Phylogeography of Arabidopsis halleri (Brassicaceae) in mountain regions of Central Europe inferred from cpDNA variation and ecological niche modelling. PeerJ 4:e1645. https://doi.org/10.7287/peerj.preprints.1259v1

    Article  PubMed  PubMed Central  Google Scholar 

  63. Willems G, Dräger DB, Courbot M, Godé C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674. https://doi.org/10.1534/genetics.106.064485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Woloszczak E (1896) Z granicy flory zachodnio- i wschodnio-karpackiej. Spraw Komis Fizjogr Akad Umiejetn 31:119–159

    Google Scholar 

Download references

Acknowledgements

We are grateful to all colleagues that helped us with the field sampling (see the Appendix) or provided locality data. The research was supported by the Czech Science Foundation (Grant No. 16-10809S) and by the Grant Agency VEGA, Bratislava, Slovakia (Grant No. 2/0137/17). The STRUCTURE computations were performed using resources provided by the Slovak Infrastructure for High Performance Computing (SIVVP, www.sivvp.sk).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karol Marhold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to “Biogeography of the Carpathians”.

The original version of this article was revised to update Figure 2.

Handling editor: Michal Ronikier.

Electronic supplementary material

Information on electronic supplementary material

Information on electronic supplementary material

Online resource 1. Details on the 88 populations of Arabidopsis halleri sampled for the present study.

Online resource 2. Summary of results of STRUCTURE analyses based on AFLP data on Arabidopsis halleri.

Online resource 3. Morphometric characters scored in morphologically screened populations of Arabidopsis halleri.

Online resource 4. Summary of 19 quantitative characters and five ratios scored in the morphological dataset of five Arabidopsis halleri lineages.

Online resource 5. Canonical discriminant analysis based on morphological characters and individual plants of pairs of genetic lineages/subspecies of Arabidopsis halleri, correlations of morphological characters with canonical axis (total correlation structure).

Online resource 6. Matrix of AFLP fragments used in analyses of Arabidopsis halleri.

Online resource 7. Matrix of microsatellite alleles used in analyses of Arabidopsis halleri.

Online resource 8. Matrix of morphometric measurements used in analyses of Arabidopsis halleri.

Online resource 9. Discriminant functions enabling the determination of infraspecific taxa with morphological descriptions.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šrámková, G., Kolář, F., Záveská, E. et al. Phylogeography and taxonomic reassessment of Arabidopsis halleri – a montane species from Central Europe. Plant Syst Evol 305, 885–898 (2019). https://doi.org/10.1007/s00606-019-01625-y

Download citation

Keywords

  • Arabidopsis
  • AFLPs
  • Microsatellites
  • Multivariate morphometrics
  • Taxonomy