Skip to main content
Log in

Nuclear ITS and AFLPs provide surprising implications for the taxonomy of Tephroseris longifolia agg. and the endemic status of T. longifolia subsp. moravica

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The proportion of endemic taxa is a frequently used measure for assesment of biodiversity hotspots within the Carpathians. For confirming of an endemic status of a taxon, a thorough evaluation using modern tools of plant systematics is desirable. Tephroseris longifolia subsp. moravica has been considered to be a Western Carpathian endemic, but a previous study of morphological and genome size differentiation within the T. longifolia agg. showed that its endemic position is controversial. Therefore, in this study we aimed to detect genetic variability and evolutionary relationships within the T. longifolia agg. using nuclear ITS sequences and highly variable AFLPs on 38 populations covering the distribution range of the aggregate. Additionally, we analysed 22 populations of other putatively related species (T. aurantiaca, T. capitata, T. crispa, T. integrifolia and T. papposa). Genetic analyses proved that T. longifolia agg. is genetically well differentiated, but the results contradict the current taxonomic concept. Tephroseris longifolia aggregate, as defined here, comprises T. longifolia, T. crispa, T. pseudocrispa, T. tenuifolia and T. italica. Within T. longifolia, two subspecies can be recognised, namely T. l. subsp. longifolia and T. l. subsp. moravica. Furthermore, AFLPs confirm the close relationship of Pannonian and one Croatian populations to T. l. subsp. moravica. Therefore, we assume that T. l. subsp. moravica should not be considered a Western Carpathian endemic and most probably migrated to the Western Carpathian area during the post-glacial period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler W, Oswald K, Fischer R (1994) Exkursionsflora von Österreich. E. Ulmer, Stuttgart

    Google Scholar 

  • Aeschimann D, Lauber K, Moser DM, Theurillat J-P (2004) Flora alpina. Haupt Verlag, Bern

    Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogen Evol 29:417–434

    Google Scholar 

  • Bardy KE, Albach DC, Schneeweiss GM, Fischer MA, Schönswetter P (2010) Disentangling phylogeography, polyploid evolution and taxonomy of a woodland herb (Veronica chamaedrys group, Plantaginaceae s.l.) in southeastern Europe. Molec Phylogen Evol 57:771–786. https://doi.org/10.1016/j.ympev.2010.06.025

    Article  Google Scholar 

  • Barkley TM, Murray DF (2006) Tephroseris. In: FONAE Committee (ed.) Flora of North America: north of Mexico. Oxford University Press, New York, Oxford, pp 615–618

  • Bartha D, Király G (eds) (2015) Magyarország edényes növényfajainak elterjedési atlasza. Nyugat-magyarországi Egyetem Kiadó, Sopron

    Google Scholar 

  • Beger H (1929) Senecio. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa 6/2, J. F. LehmannVerlag, München, pp 1726–1795

    Google Scholar 

  • Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Molec Ecol 13:3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x

    Article  CAS  Google Scholar 

  • Brilli-Cattarini AJB (1976) Flora Italica. CEDAM, Padova

    Google Scholar 

  • Caković D, Stešević D, Schönswetter P, Frajman B (2018) Long neglected diversity in the Accursed Mountains of northern Albania: Cerastium hekuravense is genetically and morphologically divergent from C. dinaricum. Pl Syst Evol 304:57–69. https://doi.org/10.1007/s00606-017-1448-1

    Article  Google Scholar 

  • Calonje M, Martín-Bravo S, Dobeš C, Gong W, Jordon-Thaden I, Kiefer C, Kiefer M, Paule J, Schmickl R, Koch MA (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Pl Syst Evol 282:257–280. https://doi.org/10.1007/s00606-008-0031-1

    Article  CAS  Google Scholar 

  • Chater AO, Walters SM (1976) Senecio. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 4. Plantaginaceae to compositae (and Rubiaceae). Cambridge University Press, Cambridge, pp 191–205

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Molec Ecol 9:1657–1660

    CAS  Google Scholar 

  • Conti F, Abbate G, Alessandrini A, Blasi C (eds) (2005) An annotated checklist of the Italian vascular flora. Palombi Editori, Roma

    Google Scholar 

  • Cufodontis G (1933) Kritische revision von Senecio sectio Tephroseris. Feddes Repert Beih 70:1–266

    Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244. https://doi.org/10.1038/nprot.2007.310

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. https://doi.org/10.1186/1471-2148-7-214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumolin S, Demesure B, Petit RJ (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1253–1256

    CAS  PubMed  Google Scholar 

  • Đurović S, Schönswetter P, Niketic M, Tomović G, Frajman B (2017) Disentangling relationships among the members of the Silene saxifraga alliance (Caryophyllaceae): Phylogenetic structure is geographically rather than taxonomically segregated. Taxon 66:343–364. https://doi.org/10.12705/662.4

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x

    Article  Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A, Koch M, Mummenhoff K, Nemomissa S, Intrabiodiv Consortium, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molec Ecol 16:2542–2559. https://doi.org/10.1111/j.1365-294X.2007.03299.x

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50. https://doi.org/10.1177/117693430500100003

    Article  CAS  Google Scholar 

  • Favarger C (1965) Notes de caryologie alpine IV. Bull Soc Neuchâteloise Sci Nat 88:5–60

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Flora Croatica Database (2017) Tephroseris tenuifolia (Gaudin) Holub. University of Zagreb, Zagreb. Available at:https://hirc.botanic.hr/fcd/. Accessed 1 Nov 2018

  • Forenbacher S (2001) Velebit i njegov biljni svijet. Školska knjiga, Zagreb

    Google Scholar 

  • Frajman B, Rešetnik I, Niketić M, Ehrendorfer F, Schönswetter P (2016) Patterns of rapid diversification in heteroploid Knautia sect. Trichera (Caprifoliaceae, Dipsacoideae), one of the most intricate taxa of the European flora. BMC Evol Biol 16:204. https://doi.org/10.1186/s12862-016-0773-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472. https://doi.org/10.1214/ss/1177011136

    Article  Google Scholar 

  • Greuter W (2003) The Euro+Med treatment of Senecioneae and the minor Compositae tribes — generic concepts and required new names, with an addendum to Cardueae. Willdenowia 33:245–250. https://doi.org/10.3372/wi.33.33203

    Article  Google Scholar 

  • Greuter W (2006–2018) Compositae (pro parte majore). In: Greuter W, von Raab-Straube E (eds), Euro + Med Plantbase—The information resource for Euro-Mediterranean plant diversity. Available at: http://ww2.bgbm.org/EuroPlusMed. Accesed 31 Oct 2018

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistical software package for education and data analysis. Palaeontol Electronica 4:1–9

    Google Scholar 

  • Hegedüšová K, Škodová I, Janišová M, Kochjarová J (2013) Phytosociological affiliation of Annex II species Tephroseris longifolia subsp moravica in comparison with two related Tephroseris species with overlapping distribution. Biologia (Bratislava) 68:861–871. https://doi.org/10.2478/s11756-013-0216-0

    Article  Google Scholar 

  • Hess HE, Landolt E, Hirzel R (1972) Flora der Schweiz und Angrenzender Gebiete, Band 3, Plumbaginaceae bis Compositae, vol. 3. Birkhäuser, Basel

    Google Scholar 

  • Heuertz M, Fineschi S, Anzidei M, Pastorelli R, Salvini D, Paule L, Frascaria-Lacoste N, Hardy OJ, Vekemans X, Vendramin GG (2004) Chloroplast DNA variation and postglacial recolonization of common ash (Fraxinus excelsior L.) in Europe. Molec Ecol 13:3437–3452. https://doi.org/10.1111/j.1365-294X.2004.02333.x

    Article  CAS  Google Scholar 

  • Holub J (1979a) Seznam vyhynulých, endemických a ohrožených taxonů vyšších rostlin květeny ČSR (1. verze). Preslia 51:213–223

    Google Scholar 

  • Holub J (1979b) Some novelties of the Czechoslovak flora. Preslia 51:281–282

    Google Scholar 

  • Hrouda L (2002) Tephroseris. In: Kubát K (ed) Klíč ke květeně České republiky. Academia, Praha, pp 664–665

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • Isaksson K (2009) Investigating genetic factors behind the decline of a threatened plant species: Tephroseris integrifolia (Asteraceae). PhD Thesis, University of Lund, Lund

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Janchen E (1956–1960) Catalogus Florae Austriae 1, Pteridophyten und Anthophyten. B.L. Johnson, Wien

  • Janišová M, Skokanová K, Hlásny T (2018) Ecological differentiation, speciation, and rarity: How do they match in Tephroseris longifolia agg. (Asteraceae)? Ecol Evol 8:2453–2470. https://doi.org/10.1002/ece3.3770

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayasena AS, Fisher MF, Panero JL, Secco D, Bernath-Levin K, Berkowitz O, Taylor NL, Schilling EE, Whelan J, Mylne JS (2017) Stepwise evolution of a buried inhibitor peptide over 45 My. Molec Biol Evol 34:1505–1516. https://doi.org/10.1093/molbev/msx104

    Article  CAS  PubMed  Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36. https://doi.org/10.1186/1471-2148-6-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kliment J, Turis P, Janišová M (2016) Taxa of vascular plants endemic to the Carpathian Mts. Preslia 88:19–76

    Google Scholar 

  • Kochjarová J (1997) Náčrt taxonomickej problematiky rodu Tephroseris v Západných Karpatoch. Preslia 69:71–93

    Google Scholar 

  • Kochjarová J (1998) Rod Tephroseris (Rchb.) Rchb. v geografickom priestore Západných Karpát. PhD Thesis, Comenius University in Bratislava, Bratislava

  • Kochjarová J (2006) Reports 12–14. In: Mráz P (ed) Chromosome number and DNA ploidy level reports from Central Europe—2. Biologia (Bratislava) 61:115–116

  • Kochjarová J, Hrouda L (2004) Tephroseris (Reichenb.) Reichenb. In: Slavík B, Štěpánková J, Štěpánek J (eds) Květena České republiky 7. Academia, Praha, pp 300–306

    Google Scholar 

  • Kołaczek P, Karpińska-Kołaczek M, Madeja J, Kalinovych N, Szczepanek K, Gębica P, Harmata K (2016) Interplay of climate–human–vegetation on the north-eastern edge of the Carpathians (Western Ukraine) between 7500 and 3500 calibrated years BP. Biol J Linn Soc 119:609–629. https://doi.org/10.1111/bij.12732

    Article  Google Scholar 

  • Kolarčik V, Zozomová-Lihová J, Mártonfi P (2010) Systematics and evolutionary history of the Asterotricha group of the genus Onosma (Boraginaceae) in central and southern Europe inferred from AFLP and nrDNA ITS data. Pl Syst Evol 290:21–45

    Google Scholar 

  • Krach B (1988) Tephroseris integrifolia subsp. vindelicorum: eine neue Sippe vom Augsburger Lechfeld. Mitt Bot Staatssamml München 27:73–86

    Google Scholar 

  • Kučera J, Turis P, Zozomová-Lihová J, Slovák M (2013) Cyclamen fatrense, myth or true Western Carpathian endemic? Genetic and morphological evidence. Preslia 85:133–158

    Google Scholar 

  • Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B (2016) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molec Biol Evol 34:772–773. https://doi.org/10.1093/molbev/msw260

    Article  CAS  Google Scholar 

  • Maglocký Š (1983) Zoznam vyhynutých, endemických a ohrozených taxónov vyšších rastlín flóry Slovenska. Biologia (Bratislava) 38:825–852

    Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latałowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knapp WO, Petit R, de Beaulieu J-L (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x

    Article  CAS  PubMed  Google Scholar 

  • Marquer L, Gaillard M-J, Sugita S, Poska A, Trondman A-K, Mazier F, Nielsen AB, Fyfe RM, Jönsson AM, Smith B, Kaplan JO, Alenius T, Birks HJB, Bjune AE, Christiansen J, Dodson J, Edwards KJ, Giesecke T, Herzschuh U, Kangur M, Koff T, Latałowa M, Lechterbeck J, Olofsson J, Seppä H (2017) Quantifying the effects of land use and climate on Holocene vegetation in Europe. Quatern Sci Rev 171:20–37. https://doi.org/10.1016/j.quascirev.2017.07.001

    Article  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediteraneaen Basin. J Biogeogr 36:1333–1345. https://doi.org/10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Meindl C (2011) New aspects in plant conservation. Phylogeography, population dynamics, genetics and management of steppe plants in Bavaria. PhD Thesis, University of Regensburg, Regensburg

  • Mereďa P Jr, Majerová M, Somlyay L, Pekárik L, Hodálová I (2019) Genome size variation in the Western Carpathian Sesleria (Poaceae) species. Pl Syst Evol (in press). https://doi.org/10.1007/s00606-019-01622-1

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice AFLP applications, analyses and advances. Trends Pl Sci 12:106–117. https://doi.org/10.1016/j.tplants.2007.02.001

    Article  CAS  Google Scholar 

  • Mráz P, Ronikier M (2016) Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc 119:528–559. https://doi.org/10.1111/bij.12918

    Article  Google Scholar 

  • Mráz P, Barabas D, Lengyelová L, Turis P, Schmotzer A, Janišová M, Ronikier M (2016) Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. Biol J Linn Soc 119:630–648. https://doi.org/10.1111/bij.12792

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas KB, Nicholas HB, Deerfield DW (1997) GeneDoc: analysis and visualization of genetic variation. EMBNEW News 4:14

    Google Scholar 

  • Nieto Feliner G, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec Phylogen Evol 44:911–919. https://doi.org/10.1016/j.ympev.2007.01.013

    Article  CAS  Google Scholar 

  • Nordenstam B (1978) Taxonomic studies in the tribe Senecionae (Compositae). Opera Bot 44:1–83

    Google Scholar 

  • Nordenstam B (2007) Tribe Senecioneae. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, vol 8. Flowering plants, Eudicots, Asterales. Springer, Heidelberg, pp 208–241

    Google Scholar 

  • Olšavská K, Perný M, Kučera J, Hodálová I (2011) Biosystematics study of the Cyanus triumfetti group in Central Europe. Preslia 83:59–98

    Google Scholar 

  • Olšavská K, Šingliarová B, Kochjarová J, Labdíková Z, Škodová I, Hegedüšová K, Janišová M (2015) Exploring patterns of variation within the central-European Tephroseris longifolia agg.: karyological and morphological study. Preslia 87:163–194

    Google Scholar 

  • Olšavská K, Slovák M, Marhold K, Štubňová E, Kučera J (2016) On the origins of Balkan endemics: the complex evolutionary history of the Cyanus napulifer group (Asteraceae). Ann Bot (Oxford) 118:1071–1088. https://doi.org/10.1093/aob/mcw142

    Article  CAS  Google Scholar 

  • Paule J, Dunkel FG, Schmidt M, Gregor T (2018) Climatic differentiation in polyploid apomictic Ranunculus auricomus complex in Europe. BMC Ecol 18:16. https://doi.org/10.1186/s12898-018-0172-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelser PB, Nordenstam B, Kadereit JW, Watson LE (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56:1077–1104

    Google Scholar 

  • Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B, Kadereit J, Watson LE (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. Amer J Bot 97:856–873. https://doi.org/10.3732/ajb.0900287

    Article  CAS  Google Scholar 

  • Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Svejgaard Jensen J, König AO, Lowe AJ, Kremer A (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Managem 156:49–74. https://doi.org/10.1016/S0378-1127(01)00634-X

    Article  Google Scholar 

  • Pflugbeil G (2012) Population genetic and morphological studies in a hybrid zone between two subspecies of Tephroseris helenitis (L.) B. Nord. (Asteraceae) at the northern fringe of the Alps. MSc Thesis, University of Salzburg, Salzburg

  • Pignatti S, Guarino R, La Rosa M (2018) Flora d’Italia, 2nd edn, vol. 3. Edagricole-New Business Media, Bologna

    Google Scholar 

  • Postolache D, Popescu F, Paule L, Ballian D, Zhelev P, Fărcaş S, Paule J, Badea O (2017) Unique postglacial evolution of the hornbeam (Carpinus betulus L.) in the Carpathians and the Balkan Peninsula revealed by chloroplast DNA. Sci Total Environm 599:1493–1502. https://doi.org/10.1016/j.scitotenv.2017.05.062

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rambaut A (2014) FigTree v1.4.2: tree figure drawing tool. Available at: http://tree.bio.ed.ac.uk

  • Rambaut A, Drummond AJ (2015a) LogCombiner v1.8.2. Available at: http://beast.bio.ed.ac.uk

  • Rambaut A, Drummond AJ (2015b) TreeAnnotator v1.8.2: MCMC output analysis. Available at: http://beast.bio.ed.ac.uk

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst Biol 67:901–904. https://doi.org/10.1093/sysbio/syy032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravnik V, Strgar V, Wraber T (eds) (1984) Mala flora Slovenije. Državna založba Slovenije, Ljubljana

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572. https://doi.org/10.1111/j.1471-8286.2006.01225.x

    Article  CAS  Google Scholar 

  • Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Molec Ecol 14:3547–3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x

    Article  CAS  Google Scholar 

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molec Phylogen Evol 42:92–103. https://doi.org/10.1016/j.ympev.2006.06.016

    Article  CAS  Google Scholar 

  • Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity Evol 12:335–337. https://doi.org/10.1007/s13127-011-0056-0

    Article  Google Scholar 

  • Simon T (2000) A Magyarországi edényes flóra határozója. Nemzeti tankönyvkiadó, Budapest

    Google Scholar 

  • Šingliarová B, Olšavská K, Kochjarová J, Labdíková Z, Janišová M (2013) Exploring patterns of variation within Tephroseris longifolia agg. (Asteraceae). Acta Biol Cracov Bot 55:68

    Google Scholar 

  • Skokanová K, Hodálová I, Mereďa P Jr, Slovák M, Kučera J (2019) The Cyanus tuberosus group (Asteraceae) in the Balkans: biological entities require correct names. Pl Syst Evol 305:569–596. https://doi.org/10.1007/s00606-019-01576-4

    Article  Google Scholar 

  • Skubic M, Schönswetter P, Frajman B (2018) Diversification of Cerastium sylvaticum and C. subtriflorum on the margin of the south-eastern Alps. Pl Syst Evol 304:1101–1115. https://doi.org/10.1007/s00606-018-1535-y

    Article  CAS  Google Scholar 

  • Slovák M, Kučera J, Turis P, Zozomová-Lihová J (2012) Multiple glacial refugia and postglacial colonization routes inferred for a woodland geophyte, Cyclamen purpurascens: patterns concordant with the Pleistocene history of broadleaved and coniferous tree species. Biol J Linn Soc 105:741–760. https://doi.org/10.1111/j.1095-8312.2011.01826.x

    Article  Google Scholar 

  • Smissen RD, Breitwieser I (2008) Species relationships and genetic variation in the New Zealand endemic Leucogenes (Asteraceae: Gnaphalieae). New Zealand J Bot 46:65–76. https://doi.org/10.1080/00288250809509754

    Article  Google Scholar 

  • Smith UK (1979) Biological flora of the British lsles. No. 147: Senecio integrifolius (L.) Clairv. J Ecol 67:1109–1124

    Google Scholar 

  • Španiel S, Marhold K, Filová B, Zozomová-Lihová J (2011) Genetic and morphological variation in the diploid–polyploid Alyssum montanum in Central Europe: taxonomic and evolutionary considerations. Pl Syst Evol 294:1–25. https://doi.org/10.1007/s00606-011-0438-y

    Article  Google Scholar 

  • Španiel S, Marhold K, Zozomová-Lihová J (2017) The polyploid Alyssum montanum-A. repens complex in the Balkans: a hotspot of species and genetic diversity. Pl Syst Evol 303:1443–1465. https://doi.org/10.1007/s00606-017-1470-3

    Article  CAS  Google Scholar 

  • Stachurska-Swakoń A, Cieślak E, Ronikier M (2012) Phylogeography of subalpine tall-herb species in central Europe: the case of Cicerbita alpina. Preslia 84:121–140

    Google Scholar 

  • Stachurska-Swakoń A, Cieślak E, Ronikier M (2013) Phylogeography of a subalpine tall-herb Ranunculus platanifolius (Ranunculaceae) reveals two main genetic lineages in the European mountains. Bot J Linn Soc 171:413–428. https://doi.org/10.1111/j.1095-8339.2012.01323.x

    Article  Google Scholar 

  • Stachurska-Swakoń A, Cieślak E, Ronikier M, Nowak J, Kaczmarczyk A (2019) Genetic structure of Doronicum austriacum Jacq. (Asteraceae) in the Carpathians and adjacent areas: towards a comparative phylogeographical analysis of tall-herb species. Pl Syst Evol (in press)

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 301:312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  Google Scholar 

  • StatSoft Inc. (2013) Electronic statistics textbook. Tulsa, Oklahoma. Available at:http://www.statsoft.com/textbook/. Accessed 22 Aug 2018

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tukey JW (1977) Exploratory data analysis. Addison-Wesley Publishing Company, Reading

    Google Scholar 

  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ, Smith GF (eds) (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten. https://doi.org/10.12705/Code.2018

    Google Scholar 

  • Uhríková A, Májovský J (1980) Report. In: Löve Á (ed) Chromosome number reports LXIX, vol 29. Taxon, pp 725–726

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijeters A et al (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagenitz G (1987) Senecio L. In: Conert JA et al (eds) Hegi G., Illustrierte Flora von Mitteleuropa VI/2. Nachträge, Berichtigungen und Ergänzungen zum Nachdruck der 1. Auflage, Paul Parey, Berlin, pp 1353–1452

  • Wang L-Y, Pelser PB, Nordenstam B, Liu J-Q (2009) Strong incongruence between the ITS phylogeny and generic delimitation in the Nemosenecio-Sinosenecio-Tephroseris assemblage (Asteraceae: Senecioneae). Bot Stud (Taipei) 50:435–442

    Google Scholar 

Download references

Acknowledgements

We thank those listed in Online Resources for help in the collection of plant material. We are grateful to the staff of the Grunelius-Möllgaard Laboratory (Senckenberg Research Institute Frankfurt) for laboratory support and to the anonymous reviewers for improving of the manuscript. The study was financially supported by the Scientific Grant Agency of the Slovak Republic (VEGA 2/0096/15 and VEGA 2/0154/17). This research received also support from the SYNTHESYS Project (Grant No. DE-TAF-6507; http://www.synthesys.info/) which is financed by the European Community Research Infrastructure Action under the FP7 “Capacities” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarína Skokanová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Bogdan-Iuliu Hurdu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contribution to "Biogeography of the Carpathians".

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Locality details, and details for AFLP (number of analysed individuals, average number of AFLP fragments per individual ± standard deviation; number of polymorphic markers, number of fixed fragments, frequency down-weighted marker and Nei’s gene diversity values), ITS (number of analysed individuals, ITS-types from Statistical parsimony network analysis, GenBank accessions numbers) and relative DNA content data (number of analysed individuals and relative DNA content with standard deviation).

Online Resource 2. ITS alignment.

Online Resource 3. The most probable value of K and Evanno’s delta K for 286 individuals of the Tephroseris longifolia agg. (a, b), for 237 individuals of T. crispa, T. longifolia subsp. longifolia, T. l. subsp. moravica and T. pseudocrispa (c, d) and for 49 individuals of T. italica and T. tenuifolia (e, f).

Online Resource 4. Unrooted neighbour-joining tree analysis (a) and neighbour-net diagram (b) based on AFLP profiles of the Tephroseris longifolia agg. (252 individuals, populations EBE, HIR, FAL, SAM and TRD with presumably hybrid origin omitted).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skokanová, K., Šingliarová, B., Kochjarová, J. et al. Nuclear ITS and AFLPs provide surprising implications for the taxonomy of Tephroseris longifolia agg. and the endemic status of T. longifolia subsp. moravica. Plant Syst Evol 305, 865–884 (2019). https://doi.org/10.1007/s00606-019-01624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-019-01624-z

Keywords

Navigation