Monatshefte für Mathematik

, Volume 185, Issue 3, pp 525–536 | Cite as

Decay estimate and well-posedness for the 3D Euler equations with Coriolis force



In this paper, we are concerned with the cauchy problem of the 3D Euler equations in rotation framework. Provided the speed of rotation \(|\Omega |\) is sufficiently large, we can obtain the global well-posedness of corresponding solutions. The lower bound of \(|\Omega |\) is the polynomial form of the initial data and the time, which improves the exponential form by Koh et al. (J Differ Equ 256:707–744, 2014). The idea is applying a decay estimate instead of the Strichartz estimate.


Euler equations Decay estimate Well-posedness 

Mathematics Subject Classification

35Q31 76B03 



This paper is supported by NSF of China No. 11671363.


  1. 1.
    Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev space. Invent. Math. 201, 97–157 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bourgain, J., Li, D.: Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces. Geom. Funct. Anal. 25, 1–86 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chae, D.: On the well-posedness of the euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chae, D.: Local existence and blowup criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38, 339–358 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and Dispersion in Rotating Fluids. Stud. Math. Appl. 31, 171–192 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics, Oxford Lecture Series in Mathematics and Its Applications, vol. 32. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  7. 7.
    Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces. Arch. Ration. Mech. Anal. 195, 561–578 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dutrifoy, A.: Examples of dispersive effects in non-viscous rotating fluids. J. Math. Pure Appl. 84, 331–356 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, Berlin (2008)Google Scholar
  10. 10.
    Kato, T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)CrossRefMATHGoogle Scholar
  11. 11.
    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koh, Y., Lee, S., Takada, R.: Strichartz estimates for the Euler equations in the rotating framework. J. Differ. Equ. 256, 707–744 (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Pak, H.C., Park, Y.J.: Existence of solution for the euler equations in a critical besov space \(\dot{B}_{\infty,1}^1\). Commun. Partial Differ. Equ. 29, 1149–1166 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  15. 15.
    Takada, R.: Long time existence of classical solution for the 3D incompressible rotating Euler equations. J. Math. Soc. Jpn. 2, 579–608 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesNanjing Normal UniversityNanjingChina
  2. 2.Department of MathematicsZhejiang Normal UniversityJinhuaChina

Personalised recommendations