Advertisement

Monatshefte für Mathematik

, Volume 185, Issue 3, pp 525–536 | Cite as

Decay estimate and well-posedness for the 3D Euler equations with Coriolis force

Article
  • 120 Downloads

Abstract

In this paper, we are concerned with the cauchy problem of the 3D Euler equations in rotation framework. Provided the speed of rotation \(|\Omega |\) is sufficiently large, we can obtain the global well-posedness of corresponding solutions. The lower bound of \(|\Omega |\) is the polynomial form of the initial data and the time, which improves the exponential form by Koh et al. (J Differ Equ 256:707–744, 2014). The idea is applying a decay estimate instead of the Strichartz estimate.

Keywords

Euler equations Decay estimate Well-posedness 

Mathematics Subject Classification

35Q31 76B03 

Notes

Acknowledgements

This paper is supported by NSF of China No. 11671363.

References

  1. 1.
    Bourgain, J., Li, D.: Strong ill-posedness of the incompressible Euler equation in borderline Sobolev space. Invent. Math. 201, 97–157 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bourgain, J., Li, D.: Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces. Geom. Funct. Anal. 25, 1–86 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Chae, D.: On the well-posedness of the euler equations in the Triebel–Lizorkin spaces. Commun. Pure Appl. Math. 55, 654–678 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chae, D.: Local existence and blowup criterion for the Euler equations in the Besov spaces. Asymptot. Anal. 38, 339–358 (2004)MathSciNetMATHGoogle Scholar
  5. 5.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Anisotropy and Dispersion in Rotating Fluids. Stud. Math. Appl. 31, 171–192 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics, Oxford Lecture Series in Mathematics and Its Applications, vol. 32. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  7. 7.
    Chen, Q., Miao, C., Zhang, Z.: On the well-posedness of the ideal MHD equations in the Triebel–Lizorkin spaces. Arch. Ration. Mech. Anal. 195, 561–578 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dutrifoy, A.: Examples of dispersive effects in non-viscous rotating fluids. J. Math. Pure Appl. 84, 331–356 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, Berlin (2008)Google Scholar
  10. 10.
    Kato, T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}}^3\). J. Funct. Anal. 9, 296–305 (1972)CrossRefMATHGoogle Scholar
  11. 11.
    Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Koh, Y., Lee, S., Takada, R.: Strichartz estimates for the Euler equations in the rotating framework. J. Differ. Equ. 256, 707–744 (2014)CrossRefMATHGoogle Scholar
  13. 13.
    Pak, H.C., Park, Y.J.: Existence of solution for the euler equations in a critical besov space \(\dot{B}_{\infty,1}^1\). Commun. Partial Differ. Equ. 29, 1149–1166 (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)MATHGoogle Scholar
  15. 15.
    Takada, R.: Long time existence of classical solution for the 3D incompressible rotating Euler equations. J. Math. Soc. Jpn. 2, 579–608 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesNanjing Normal UniversityNanjingChina
  2. 2.Department of MathematicsZhejiang Normal UniversityJinhuaChina

Personalised recommendations